21 |
Physique et modélisation d’interactions instationnaires onde de choc/couche limite autour de profils d’aile transsoniques par simulation numérique / Physics and modeling of unsteady shock wave/boundary layer interactions over transonic airfoils by numerical simulationGrossi, Fernando 05 May 2014 (has links)
L’interaction onde de choc/couche limite en écoulement transsonique autour de profils aérodynamiques est étudiée numériquement utilisant différentes classes de modélisation de la turbulence. Les approches utilisées sont celles de modèles URANS et de méthodes hybrides RANS-LES. L’emploi d’une correction de compressibilité pour les fermetures à une équation est aussi évalué. Premièrement, la séparation intermittente induite par le choc sur un profil supercritique en conditions d’incidence proches de l’angle critique d’apparition du tremblement est analysée. Suite à des simulations URANS, la modélisation statistique la mieux adaptée est étudiée et utilisée dans l’approche DDES (Delayed Detached-Eddy Simulation). L’étude de la topologie de l’écoulement, des pressions pariétales et champs de vitesse statistiques montrent que les principales caractéristiques de l’oscillation auto-entretenue du choc sont capturées par les simulations. De plus, la DDES prédit des fluctuations secondaires de l’écoulement qui n’apparaissent pas en URANS. L’étude de l’interface instationnaire RANS-LES montre que la DDES évite le MSD (modeled stress depletion) pour les phases de l’écoulement attaché ou séparé. Le problème de la ‘zone grise’ et de son influence sur les résultats est considéré. Les conclusions de l’étude sur le profil supercritique est ensuite appliquées à l’étude numérique d’un profil transsonique laminaire. Dans ce contexte, l’effet de la position de la transition de la couche limite sur les caractéristiques de deux régimes d’interaction choc/couche limite sélectionnés est étudié. En conditions de tremblement, les simulations montrent une forte influence du point de transition sur l’amplitude du mouvement du choc et sur l’instationnarité globale de l’écoulement. / Shock wave/boundary layer interactions arising in the transonic flow over airfoils are studied numerically using different levels of turbulence modeling. The simulations employ standard URANS models suitable for aerodynamics and hybrid RANS-LES methods. The use of a compressibility correction for one-equation closures is also considered. First, the intermittent shock-induced separation occurring over a supercritical airfoil at an angle of attack close to the buffet onset boundary is investigated. After a set of URANS computations, a scale-resolving simulation is performed using the best statistical approach in the context of a Delayed Detached-Eddy Simulation (DDES). The analysis of the flow topology and of the statistical wall-pressure distributions and velocity fields show that the main features of the self-sustained shock-wave oscillation are predicted by the simulations. The DDES also captures secondary flow fluctuations which are not predicted by URANS. An examination of the unsteady RANS-LES interface shows that the DDES successfully prevents modeled-stress depletion whether the flow is attached or separated. The gray area issue and its impact on the results are also addressed. The conclusions from the supercritical airfoil simulations are then applied to the numerical study of a laminar transonic profile. Following a preliminary characterization of the airfoil aerodynamics, the effect of the boundary layer transition location on the properties of two selected shock wave/boundary layer interaction regimes is assessed. In transonic buffet conditions, the simulations indicate a strong dependence of the shock-wave motion amplitude and of the global flow unsteadiness on the tripping location.
|
22 |
Self adaptive turbulence models for unsteady compressible flows Modèles de turbulence auto-adaptatifs pour la simulation des écoulements compressibles instationnaires / Modèles de turbulence auto-adaptatifs pour la simulation des écoulements compressibles instationnairesPont, Grégoire 08 April 2015 (has links)
Cette thèse est principalement dédiée à la simulation des écoulements massivement décollés dans le domaine spatial. Nous avons restreint notre étude aux écoulements d'arrière-corps, pour lesquels ces décollements sont imposés par des changements brutaux de la géométrie. Dans le domaine spatial, le caractère fortement compressible des écoulements rencontrés impose l'utilisation de schémas numériques robustes. D'un autre coté, la simulation fine de la turbulence impose des schémas d'ordre élevé et peu dissipatifs. Ces deux spécifications, apparemment contradictoires, doivent pourtant coexister au sein d'une même simulation. Les modèles de turbulence ainsi que les schémas de discrétisation sont indissociables et leur couplage doit impérativement être considéré. Les schémas numériques doivent garder leur précision formelle dans des géométries complexes et des maillages très irréguliers imposés par le contexte industriel. Cette étude analyse le schéma de discrétisation utilisé dans le code de calcul FLUSEPA développé par Airbus Defence & Space. Ce schéma est robuste et précis pour des écoulements avec chocs et il présente une faible sensibilité au maillage (l'ordre 3 étant conservé même sur des maillages fortement perturbés). Malheureusement, le schéma possède une trop faible résolvabilité liée à un niveau de dissipation trop élevé pour envisager des simulations hybrides RANS/LES. Pour pallier à cet inconvénient, nous nous sommes penchés vers une solution basée sur un recentrage conditionnel et local : dans les zones dominées par des structures tourbillonnaires, une fonction analytique assure un recentrage local lorsque la stabilité numérique le permet. Cette condition de stabilité assure le couplage entre le schéma et le modèle. De cette manière, les viscosités laminaire et tourbillonnaire sont les seules à jouer un rôle dans les régions dominées par la vorticité et servent aussi à stabiliser le schéma numérique. Cette étude présente de plus une comparaison qualitative et quantitative de plusieurs modèles hybrides RANS/LES, à égalité de maillage et de schéma utilisés Pour cela, un certain nombre d'améliorations (notamment de leur capacité à résoudre les instabilités de Kelvin-Helmohlotz sans retard), proposées dans la littérature ou bien introduites dans cette thèse, sont prises en compte. Les applications numériques étudiées concernent des géométries allant de la marche descendante au lanceur spatial complet à échelle réduite. / This thesis is mainly dedicated to the simulation of massively separated flows in the space domain. We restricted our study to afterbody flows, where the separation is imposed by abrupt geometry changes. In the space domain, highly compressible flows require the use of robust numerical schemes. On the other hand, the simulation of turbulence imposes high-order low dissipative numerical schemes. These two specifications, apparently contradictory, must coexist within the same simulation. The coupling between turbulence models and discretization schemes is of the utmost importance and must be considered. Numerical schemes should keep their formal accuracy on complex geometries and on very irregular meshes imposed by the industrial context. In this research, we analyze the discretization scheme implemented in the FLUSEPA solver, developed by Airbus Defence & Space. Such a scheme is robust and accurate for flows with shocks and exhibits a low sensitivity to the grid (the third order of accuracy being ensured, even on highly irregular grids). Unfortunately, the scheme possesses a too low resolvability related to a too high numerical dissipation for RANS/LES simulations. To circumvent this problem, we considered a conditional and local re-centering strategy: in regions dominated by vortical structures, an analytic function provides local re-centering when a numerical stability condition is satisfied. This stability condition ensures the coupling between the numerical scheme and the model. In this way, only the turbulent and the laminar viscosities play a role in regions dominated by vorticity, and also allow to stabilize the numerical scheme. This study provides also a qualitative and quantitative assessment of several hybrid RANS/LES models, using the same grids and discretization scheme. For this purpose some recent improvements (improving their ability to trigger the Kelvin-Helmohlotz instabilities without delay), proposed in the litterature or suggested in this work, are taken into account. Numerical applications include geometrical configurations ranging from a backward facing step to realistic launcher configurations.
|
23 |
Simulations numériques avancées et analyses physiques de couches limites turbulentes à grand nombre de Reynolds / Advanced numerical simulations and physical analyses of turbulent boundary layers at high Reynolds numberRenard, Nicolas 08 January 2016 (has links)
Mieux comprendre les spécificités de la dynamique des couches limites à grand nombre de Reynolds malgré les contraintes métrologiques et son coût de simulation numérique est crucial. A titre d'exemple, cette dynamique peut déterminer plus de la moitié de la traînée d'un avion en croisière. Décrire la turbulence pariétale peut guider la résolution numérique d'une partie des fluctuations à un coût maîtrisé par des stratégies WMLES (simulation des grandes échelles avec modèle de paroi). Les présentes analyses physiques de couches limites turbulentes incompressibles à gradient de pression nul et à grand nombre de Reynolds s'appuient sur des simulations numériques avancées. Après validation d'une base de données, le frottement moyen pariétal est décomposé selon l'identité FIK (Fukagata et al. (2002)), dont l'application malgré le développement spatial est discutée. Une analyse spectrale montre que les grandes échelles (\lambda_x > \delta) contribuent à environ la moitié du frottement vers Re_\theta = 10^4. Les limitations de l'identité FIK motivent la dérivation d'une décomposition physique de la génération du frottement dont le comportement asymptotique est alors relié à la production d'énergie cinétique turbulente dans la zone logarithmique. Pour mieux reconstruire les spectres spatiaux, une nouvelle méthode d'estimation de la vitesse de convection turbulente en fonction de la longueur d'onde des fluctuations, adaptée au développement spatial et à des signaux temporels de durée finie, est dérivée, interprétée et évaluée à Re_\theta = 13000. Certaines des conclusions éclairent des modifications d'une stratégie WMLES, le mode III de la méthode ZDES. / Better understanding the specificities of the dynamics of high-Reynolds number boundary layers despite metrological constraints and its numerical simulation cost is crucial. For instance, this dynamics can determine more than half of the drag of a cruising aircraft. Describing wall turbulence can guide the numerical resolution of some of the fluctuations at a limited cost by WMLES strategies (wall-modelled large eddy simulation). The present physical analyses of zero-pressure gradient incompressible turbulent boundary layers at high Reynolds number rely on advanced numerical simulations. After validating a database, mean skin friction is decomposed by means of the FIK identity (Fukagata et al. (2002)), whose application despite the spatial growth is discussed. A spectral analysis shows that the large scales (\lambda_x > \delta) contribute approximately half of the friction near Re_\theta = 10^4. The limitations of the FIK identity motivate the derivation of a physical decomposition of the generation of friction whose asymptotic behaviour is then related to turbulent kinetic energy production in the logarithmic layer. In order to better reconstruct spatial spectra, a new method to estimate the turbulent convection velocity as a function of the wavelength of the fluctuations, adapted to spatial growth and to temporal signals of finite duration, is derived, interpreted, and assessed at Re_\theta = 13000. Some of the conclusions enlighten modifications to a WMLES strategy, mode III of the ZDES method.
|
24 |
HYBRID RANS-LES STUDY OF TIP LEAKAGE FLOW IN A 1.5 STAGE TURBINEAdwiteey Raj Shishodia (19339674) 06 August 2024 (has links)
<p dir="ltr">Gas turbines are widely used to provide propulsion, electrical-power, and mechanical power. Though tremendous advances have been made since Frank Whittle’s patent of a turbojet in 1930 and Hans von Ohain’s patent of the first operational turbojet in 1936, industry still has aggressive goals on improvements in efficiency and service life. One area where further advances are needed is better control of the flow across the gap between the blade tip and the shroud, referred to as tip-leakage flow (TLF). This is because TLF accounts for up to one-third of the aerodynamic losses in a turbine stage.</p><p dir="ltr">In this study, hybrid LES-RANS based on IDDES and steady RANS based on the SST turbulence model were used to study the compressible flow in a 1.5-stage turbine with geometry and operating conditions that are relevant to power-generation gas turbines. The focus is on the flow in the tip-gap region that account for the flow features created by the upstream stator vanes, stator-rotor interactions, and downstream stator vanes. Results obtained reveal the flow structures about the tip-gap region and the flow mechanisms that create them. Results obtained also show where steady RANS with mixing plane could predict correctly when compared with results from IDDES that resolve the unsteadiness of the turbulence and the motion of the rotor blades passing the stator vanes. Turbulent statistics from the IDDES were generated to guide the development of better RANS models. Results were also obtained by using RANS to examine the effects of blade loading, where mass flow rate through the 1.5 stage turbine was varied with the rotor’s rotational speed fixed at 3,600 RPM – the speed at which power-generation gas turbines operate in the U.S.</p><p dir="ltr">Key findings are as follows: In the first-stage stator, horseshoe, passage, and corner vortices were found to be confined within 10 to 15% span from the hub and shroud, and both steady RANS and IDDES generated similar results. Steady RANS and IDDES, however, differed considerably in how they predicted the wake downstream of the vane’s trailing edge. This coupled with the use of mixing plane, steady RANS was unable to account for effects of stator-rotor interactions and their effects on the tip-leakage flow. In the rotor, steady RANS predicted passage vortices that extended up to 50% span from the hub and 25% span from the shroud. The flow through the tip gap was found to induce a separation bubble on the blade tip and one large and two small vortical structures on the suction side of the blade and a vortical structure next to the shroud. These structures were found to grow along the axial chord of the blade. Steady RANS also predicted the large tip leakage vortex that contained the fluid from the tip-leakage flow to breakdown. IDDES did not predict the vortex breakdown because all of the coherent vortical structures identified including the separated region on the blade tip were unsteady and constantly shedding. As a result, IDDES predicted much smaller mean passage vortices – albeit the instantaneous structures were nearly as large as those predicted by steady RANS.</p>
|
25 |
Analyse de la modélisation turbulente en écoulements tourbillonnaires / Turbulent modelling analysis on rotating flowsMonier, Jean-François 02 July 2018 (has links)
L'objectif de la présente étude est d'analyser la modélisation de la turbulence de simulations en moyenne de Reynolds (RANS) dans le cadre d'écoulements de type turbomachines, en utilisant des simulations aux grandes échelles (SGE) comme référence. L'étude porte sur deux cas test: un décollement de coin dans une grille d'aubes rectiligne, et un écoulement de jeu pour un aubage isolé dans un jet. Deux lois de comportement, la loi de comportement de Boussinesq et la loi de comportement quadratique (quadratic constitutive relation ou QCR), sont analysées, avec deux versions du modèle de turbulence k-omega de Wilcox. Les lois de comportement étudiées reposent sur deux hypothèses: une hypothèse d'alignement entre le tenseur de Reynolds et un tenseur construit à partir de l'écoulement moyen, et une hypothèse sur la viscosité turbulente. L'hypothèse d'alignement est étudiée à partir de la SGE, pour laquelle les deux tenseurs sont indépendamment connus, en utilisant un indicateur construit sur le produit scalaire des tenseurs. Les résultats sont présentés sous forme d'une fonction de répartition de la valeur de l'indicateur pour le domaine complet, puis pour trois sous-domaines d'intérêt: l'entrée, une région où l'écoulement interagit fortement avec les parois, et une région où l'écoulement est fortement tourbillonnaire. L'hypothèse d'alignement n'est que rarement valide pour la loi de comportement de Boussinesq. Pour la QCR, les résultats sont meilleurs en entrée, comparé à la loi de Boussinesq. Il ne sont cependant pas meilleurs pour les régions où l'écoulement est plus tourbillonnaire. Une amélioration de la loi de comportement est nécessaire pour pouvoir faire progresser la modélisation turbulente en RANS. En revanche, l'utilisation de l'énergie cinétique turbulente et du taux de dissipation spécifique semble correcte pour estimer la valeur de la viscosité turbulente. L'analyse de la modélisation de l'équation d'énergie cinétique turbulente (ECT) est réalisée au travers d'une comparaison terme à terme avec l'équation d'ECT résolue par la SGE. Les résultats SGE présentent une turbulence qui n'est pas à l'équilibre : la production et la dissipation ne sont pas superposées, et le terme de transport est important. Pour le RANS, la turbulence est à l'équilibre : la production et la dissipation sont superposées, et le terme de transport est de faible intensité. Un modèle de turbulence qui prend en compte le déséquilibre est nécessaire pour améliorer ce point. En dernier lieu, une nouvelle formulation hybride RANS/SGE est proposée, fondée sur la distance à la paroi en unités de paroi. La formulation est validée dans un canal bi-périodique et un premier essai est réalisé sur le cas de décollement de coin, mais d'autres analyses sont nécessaires avant que cette formulation ne soit fonctionnelle. / The present study aims at analysing turbulence modelling in Reynolds-averaged Navier-Stokes (RANS) simulations, in the context of turbomachinery flows, using large-eddy simulations (LES) as references. Two test cases are considered: a corner separation (CS) flow in a linear compressor cascade, and a tip-leakage (TL) flow of a single blade in a jet. Two constitutive relations, the Boussinesq constitutive relation and the quadratic constitutive relation (QCR), are investigated, with two versions of Wilcox's $k-\omega$ turbulence model. The studied constitutive relations rely on two hypotheses: an alignment hypothesis between the Reynolds stress tensor and a mean flow tensor, and an hypothesis on the turbulent viscosity. The alignment hypothesis is investigated using LES, where both the tensors are known independently, with an indicator built on the inner product of the tensors. The results are presented as probability density functions of the indicator value for the entire domain first, and then for three specific areas of interest: the inlet area, similar to a boundary-layer flow, an area of strong interaction between the flow and the walls (CS: passage area, TL: tip clearance) and an area of highly vortical flow (CS: separation wake, TL: tip-leakage vortex). The alignment hypothesis is rarely verified in any area for the Boussinesq constitutive relation. For the QCR, the results are improved for the inlet areas compared to the Boussinesq constitutive relation, but no significant improvement is found in the highly vortical regions. An improvement of the constitutive relation is needed in order to improve the RANS turbulence modelling. In contrast, the use of the turbulent kinetic energy and the specific dissipation rate appears quite correct to estimate the turbulent viscosity. The modelling of the RANS turbulent kinetic energy (TKE) budget equation is investigated through a term to term comparison with the resolved LES TKE budget equation. The LES presents a turbulence that is not at equilibrium, with the production and the dissipation not superimposed, and an important amount of transport. This differs from the RANS models, at equilibrium: the production and the dissipation are superimposed, with a small amount of transport. The development of a non-equilibrium turbulence model for RANS simulations could improve this aspect of turbulence modelling. Finally, a new hybrid RANS-LES formulation, based on the wall distance in wall units, is also proposed. It is validated on a bi-periodical channel flow, and a first attempt is made on the corner separation case, but further investigations are still needed for the model to be fully operational.
|
26 |
Physics and modelling of unsteady turbulent flows around aerodynamic and hydrodynamic structures at high Reynold number by numerical simulation / Analyse physique et modélisation d'écoulements turbulents instationnaires autour d'obstacles aérodynamiques et hydrodynamiques à haut nombre de Reynolds par simulation numériqueSzubert, Damien 29 June 2015 (has links)
Les objectifs de cette thèse sont d'étudier les capacité prédictive des méthodes statistiques URANS et hybrides RANS-LES à modéliser des écoulements complexes à haut nombre de Reynolds et de réaliser l'analyse physique de la turbulence et des structures cohérentes en proche paroi. Ces travaux traitent de configurations étudiées dans le cadre des projets européens ATAAC (Advanced Turbulent Simulation for Aerodynamics Application Challenges) et TFAST (Transition Location Effect on Shock Wave Boundary Layer Interaction). Premièrement, l'écoulement décollé autour d’une configuration de cylindre en tandem, positionnés l'un derrière l’autre, est étudiée à un nombre de Reynolds de 166000. Un cas statique, correspondant schématique aux support de train d'atterrissage, est d’abord considéré. L’interaction fluide-structure est ensuite étudiée dans le cas dynamique, dans lequel le cylindre aval possède un degré de liberté en translation dans la direction perpendiculaire à l'écoulement. Une étude paramétrique est menée afin d'identifier les différents régimes d'interaction en fonction des paramètres structuraux. Dans un deuxième temps, la physique du tremblement transsonique est étudiée au moyen d’une analyse temps-fréquence et d’une décomposition orthogonale en modes propres (POD), dans l’intervalle de nombre de Mach 0.70–0.75. Les interactions entre le choc principal, la couche limite décollée par intermittence et les tourbillons se développant dans le sillage, sont analysées. Un forçage stochastique, basée sur une réinjection de turbulence synthétique dans les équations de transport de l’énergie cinétique et du taux de dissipation générée à partir de la reconstruction POD, a été introduit dans l’approche OES (organised-eddy simulation). Cette méthode introduit une modélisation de la turbulence “upscale" agissant comme un mécanisme de blocage par tourbillons capable de prendre en compte les interfaces turbulent/non-turbulent et de couches de cisaillement autour des géométries. Cette méthode améliore grandement la prédiction des forces aérodynamiques et ouvre de nouvelles perspectives quant aux approches de type moyennes d’ensemble pour modéliser les processus cohérents et aléatoires à haut nombre de Reynolds. Enfin, l'interaction onde de choc/couche limite (SWBLI) est traitée, dans le cas d’un choc oblique à nombre de Mach 1.7, contribuant aux études de "design d'ailes laminaires" au niveau européen. Les performances des modèles URANS et hybrides RANS-LES ont été analysées en comparant, avec les résultats expérimentaux, les valeurs intégrales de la couche limite (épaisseurs de déplacement et de quantité de mouvement) et les valeurs à la paroi (coefficient de frottement). Les effets de la transition dans la couche limite sur l’interaction choc/couche limite sont caractérisés. / This thesis aims at analysing the predictive capabilities of statistical URANS and hybrid RANS-LES methods to model complex flows at high Reynolds numbers and carrying out a physical analysis of the near-region turbulence and coherent structures. This study handles configurations included in the European research programmes ATAAC (Advanced Turbulent Simulation for Aerodynamics Application Challenges) and TFAST (Transition Location Effect on Shock Wave Boundary Layer Interaction). First, the detached flow in a configuration of a tandem of cylinders, positionned behind one another, is investigated at Reynolds number 166000. A static case, corresponding to the layout of the support of a landing gear, is initially considered. The fluid-structure interaction is then studied in a dynamic case where the downstream cylinder, situated in the wake of the upstream one, is given one degree of freedom in translation in the crosswise direction. A parametric study of the structural parameters is carried out to identify the various regimes of interaction. Secondly, the physics of the transonic buffet is studied by means of time-frequency analysis and proper orthogonal decomposition (POD), in the Mach number range 0.70–0.75. The interactions between the main shock wave, the alternately detached boundary layer and the vortices developing in the wake are analysed. A stochastic forcing, based on reinjection of synthetic turbulence in the transport equations of kinetic energy and dissipation rate by using POD reconstruction, has been introduced in the so-called organised-eddy simulation (OES) approach. This method introduces an upscale turbulence modelling, acting as an eddy-blocking mechanism able to capture thin shear-layer and turbulent/non-turbulent interfaces around the body. This method highly improves the aerodynamic forces prediction and opens new ensemble-averaged approaches able to model the coherent and random processes at high Reynolds number. Finally, the shock-wave/boundary-layer interaction (SWBLI) is investigated in the case of an oblique shock wave at Mach number 1.7 in order to contribute to the so-called "laminar wing design" studies at European level. The performance of statistical URANS and hybrid RANS-LES models is analysed with comparison, with experimental results, of integral boundary-layer values (displacement and momentum thicknesses) and wall quantities (friction coefficient). The influence of a transitional boundary layer on the SWBLI is featured.
|
Page generated in 0.029 seconds