• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Construction of an Autonomous Sentry Turret Utilising Computer Vision / Design och konstruktion av ett autonomt vakttorn nyttjande datorseende

Bermhed, Carl, Holst, Jacob January 2023 (has links)
The design and manufacture of a sentry gun turret capable of accurately and rapidly tracking and shooting moving targets was a challenging task that required delving into various engineering disciplines. This bachelor's thesis explores this challenge by presenting the process of construction, as well as the performance results of a turret created using a combination of 3D printing, laser cutting, and metal workshop manufacturing. The subject was chosen to include different aspects of the engineering fields relating to mechatronics, and for the challenge of implementing and designing multiple systems that interconnect to effectively engage with a target. The turret was created as a two-axis robot driven by stepper motors, with a gun driven by compressed air firing 6 mm plastic airsoft pellets using a clocked timing mechanism for rapid automatic firing. It was controlled by a system separated into two parts: a PC running facial recognition and colour identification software as well as performing movement calculations through python and an Arduino micro-computer running C++ controlling stepper motors and other hardware. The turret can accurately identify a target within five meters and with great speed home in and fire at the target with significant power. / Utvecklingen av ett autonomt vakttorn som med god precision och upprepbarhet kan hitta och följa ett mål var en utmanande uppgift som krävde användning av många delar av olika ingenjörsmässiga områden. Denna kandidatexamensuppsats utforskar utmaningen genom att presentera design och framtagningsprocessen samt redovisa prestandan av ett vakttorn tillverkat med 3D-utskrift, metallverkstadsmaskiner, och laserskärning. Ämnet valdes för att inkludera olika fält i nära relation till mekatronik samt för utmaningen i att implementera och integrera elektriska och mekaniska system och på så sätt effektivt hitta och hantera ett mål. Vakttornet är en tvåaxlig robot styrd med stegmotorer som har ett mekaniskt indexerad lufttrycksvapen som helautomatiskt avfyrar 6 mm airsoftkulor. Det mekaniska systemet kontrolleras av ett tvådelat kontrollsystem: en PC som kör ansiktsigenkänning och färgidentifiering i Python samt utför beräkningar för förflyttning utifrån kameradatan, samt en Arduino mikrodator med programvara i C++ som driver stegmotorerna utifrån förflyttningsinstruktionerna. Tornet kan med god precision identifiera, sikta mot och skjuta ett mål inom fem meter med en projektil av noterbar styrka.
2

A Comparative study of YOLO and Haar Cascade algorithm for helmet and license plate detection of motorcycles

Mavilla Vari Palli, Anusha Jayasree, Medimi, Vishnu Sai January 2022 (has links)
Background: Every country has seen an increase in motorcycle accidents over the years due to social and economic differences as well as regional variations in transportation circumstances. One common mode of transportation for those in the middle class is a motorbike.  Every motorbike rider is legally required to wear a helmet when driving a bike. However, some people on bikes used to ignore their safety, which resulted in them violating traffic rules by driving the bike without a helmet. The policeman tried to address this issue manually, but it was ineffective and proved to be quite challenging in practical circumstances. Therefore, automating this procedure is essential if we are to effectively enforce road safety. As a result, an automated system was created employing a variety of techniques, including Convolutional Neural Networks (CNN), the Haar Cascade Classifier, the You Only Look Once (YOLO), the Single Shot multi-box Detector (SSD), etc. In this study, YOLOv3 and Haar Cascade Classifier are used to compare motorcycle helmet and license plate detection.  Objectives: This thesis aims to compare the machine learning algorithms that detect motorcycles’ license plates and helmets. Here, the Haar Cascade Classifier and YOLO algorithms are used on the US License Plates and Helmet Detection datasets to train the models. The accuracy is obtained in detecting the helmets and license plates of the motorcycles and analyzed.  Methods: The experiment method is chosen to answer the research question. An experiment is performed to find the accuracy of the models in detecting the helmets and license plates of motorcycles. The datasets utilized for this are from Kaggle, which included 764 pictures of two distinct classes, i.e., with and without a helmet, along with 447 unique license plate images. Before training the model, preprocessing techniques are performed on US License Plates and Helmet Detection datasets. Now the datasets are divided into test and train datasets where the test data set size is considered to be 20% and the train data set size is 80%. The models are trained using 80% pre-processed training datasets and using the Haar Cascade Classifier and YOLOv3 algorithms. An observation is made by giving the 20% test data to the trained models. Finally, the prediction results of these two models are recorded and the accuracy is measured by generating a confusion matrix.   Results: The efficient and best algorithm for detecting the helmets and license plates of motorcycles is identified from the experiment method. The YOLOv3 algorithm is considered more accurate in detecting motorcycles' helmets and license plates based on the results.  Conclusions: Models are trained using Haar Cascade and YOLOv3 algorithms on US License Plates and Helmet Detection training datasets. The accuracy of the models in detecting the helmets and license plates of motorcycles is checked by using the testing datasets. The model trained using the YOLOv3 algorithm has high accuracy; hence, the Neural network-based YOLOv3 technique is thought to be the best and most efficient.
3

3D Face Reconstruction From Front And Profile Image

Dasgupta, Sankarshan 09 August 2021 (has links)
No description available.
4

INCORPORATING MACHINE VISION IN PRECISION DAIRY FARMING TECHNOLOGIES

Shelley, Anthony N. 01 January 2016 (has links)
The inclusion of precision dairy farming technologies in dairy operations is an area of increasing research and industry direction. Machine vision based systems are suitable for the dairy environment as they do not inhibit workflow, are capable of continuous operation, and can be fully automated. The research of this dissertation developed and tested 3 machine vision based precision dairy farming technologies tailored to the latest generation of RGB+D cameras. The first system focused on testing various imaging approaches for the potential use of machine vision for automated dairy cow feed intake monitoring. The second system focused on monitoring the gradual change in body condition score (BCS) for 116 cows over a nearly 7 month period. Several proposed automated BCS systems have been previously developed by researchers, but none have monitored the gradual change in BCS for a duration of this magnitude. These gradual changes infer a great deal of beneficial and immediate information on the health condition of every individual cow being monitored. The third system focused on automated dairy cow feature detection using Haar cascade classifiers to detect anatomical features. These features included the tailhead, hips, and rear regions of the cow body. The features chosen were done so in order to aid machine vision applications in determining if and where a cow is present in an image or video frame. Once the cow has been detected, it must then be automatically identified in order to keep the system fully automated, which was also studied in a machine vision based approach in this research as a complimentary aspect to incorporate along with cow detection. Such systems have the potential to catch poor health conditions developing early on, aid in balancing the diet of the individual cow, and help farm management to better facilitate resources, monetary and otherwise, in an appropriate and efficient manner. Several different applications of this research are also discussed along with future directions for research, including the potential for additional automated precision dairy farming technologies, integrating many of these technologies into a unified system, and the use of alternative, potentially more robust machine vision cameras.
5

Human computer interface based on hand gesture recognition

Bernard, Arnaud Jean Marc 24 August 2010 (has links)
With the improvement of multimedia technologies such as broadband-enabled HDTV, video on demand and internet TV, the computer and the TV are merging to become a single device. Moreover the previously cited technologies as well as DVD or Blu-ray can provide menu navigation and interactive content. The growing interest in video conferencing led to the integration of the webcam in different devices such as laptop, cell phones and even the TV set. Our approach is to directly use an embedded webcam to remotely control a TV set using hand gestures. Using specific gestures, a user is able to control the TV. A dedicated interface can then be used to select a TV channel, adjust volume or browse videos from an online streaming server. This approach leads to several challenges. The first is the use of a simple webcam which leads to a vision based system. From the single webcam, we need to recognize the hand and identify its gesture or trajectory. A TV set is usually installed in a living room which implies constraints such as a potentially moving background and luminance change. These issues will be further discussed as well as the methods developed to resolve them. Video browsing is one example of the use of gesture recognition. To illustrate another application, we developed a simple game controlled by hand gestures. The emergence of 3D TVs is allowing the development of 3D video conferencing. Therefore we also consider the use of a stereo camera to recognize hand gesture.

Page generated in 0.8533 seconds