• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 13
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 86
  • 19
  • 19
  • 16
  • 16
  • 13
  • 13
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

NF-kappaB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth.

Schmidt-Ullrich, R., Tobin, Desmond J., Lenhard, D., Schneider, P, Paus, R., Scheidereit, C. January 2000 (has links)
No / A novel function of NF-KB in the development of most ectodermal appendages, including two types of murine pelage hair follicles, was detected in a mouse model with suppressed NF-KB activity (CI¿B¿¿N). However, the developmental processes regulated by NF-¿B in hair follicles has remained unknown. Furthermore, the similarity between the phenotypes of CI¿BA¿N mice and mice deficient in Eda A1 (tabby) or its receptor EdaR (downless) raised the issue of whether in vivo NF-KB regulates or is regulated by these novel TNF family members. We now demonstrate that epidermal NF-KB activity is first observed in placodes of primary guard hair follicles at day E14.5, and that in vivo NF-KB signalling is activated downstream of Eda A1 and EdaR. Importantly, ectopic signals which activate NF-KB can also stimulate guard hair placode formation, suggesting a crucial role for NF-KB in placode development. In downless and CI¿B¿¿N mice, placodes start to develop, but rapidly abort in the absence of EdaR/NF-KB signalling. We show that NF-KB activation is essential for induction of Shh and cyclin D1 expression and subsequent placode down growth. However, cyclin D1 induction appears to be indirectly regulated by NF-KB, probably via Shh and Wnt. The strongly decreased number of hair follicles observed in CI¿B¿¿N mice compared with tabby mice, indicates that additional signals, such as TROY, must regulate NF-KB activity in specific hair follicle subtypes.
42

Fas signaling is involved in the control of hair follicle response to chemotherapy.

Sharov, A.A., Siebenhaar, F., Sharova, T.Y., Botchkareva, Natalia V., Gilchrest, B.A., Botchkarev, Vladimir A. January 2004 (has links)
No / Chemotherapeutic agents induce p53-dependent apoptosis in the hair follicle (HF) resulting in hair loss, a common side effect of cancer therapy. Here, we show that Fas as a p53 target plays important role in the HF response to cyclophosphamide. Specifically, we demonstrate that Fas is up-regulated in HF keratinocytes after cyclophosphamide treatment, Fas ligand-neutralizing antibody partially inhibits HF response to cyclophosphamide in wild-type mice, and Fas knockout mice show significant retardation of cyclophosphamide-induced HF involution associated with reduced Fas-associated death domain and caspase-8 expression. These data raise a possibility to explore blockade of Fas signaling as a part of complex local therapy for inhibiting keratinocyte apoptosis and hair loss induced by chemotherapy.
43

Intermediate hair follicles: a new more clinically relevant model for hair growth investigations

Miranda, Benjamin H., Tobin, Desmond J., Sharpe, David T., Randall, Valerie A. January 2010 (has links)
BACKGROUND: Alopecia causes widespread psychological distress, but is relatively poorly controlled. The development of new treatments is hampered by the lack of suitable human hair follicle models. Although intermediate and vellus hair follicles are the main clinical targets for pharmacological therapy, terminal hair follicles are more frequently studied as smaller hair follicles are more difficult to obtain. OBJECTIVES: This investigation was designed to quantify in vivo morphological and in vitro behavioural differences in organ culture between matched intermediate and terminal hair follicles, in order to develop a new clinically relevant model system. METHODS: Microdissected terminal and intermediate hair follicles, from the same individuals, were analysed morphometrically (250 follicles; five individuals), or observed and measured over 9 days of organ culture (210 follicles; six individuals). RESULTS: Intermediate hair follicles were less pigmented and smaller, penetrating less below the skin surface (mean +/- SEM) (2.59 +/- 0.07 vs. 3.52 +/- 0.10 mm; P = 0.02), with smaller fibre (0.03 +/- 0.002 vs. 0.07 +/- 0.002 mm), connective tissue sheath (0.24 +/- 0.01 mm vs. 0.33 +/- 0.01 mm), bulb (0.19 +/- 0.01 vs. 0.31 +/- 0.01 mm) and dermal papilla (0.06 +/- 0.002 vs. 0.12 +/- 0.01 mm) diameters (P < 0.001). Intermediate hair follicle bulbs appeared 'tubular', unlike their 'bulbous' terminal follicle counterparts. In organ culture they also grew more slowly (0.044 +/- 0.002 vs. 0.067 +/- 0.003 mm per day; P < 0.001), remained in anagen longer (84 +/- 0.03% vs. 74 +/- 0.03% at day 9; P = 0.012) and produced less hair fibre (0.36 +/- 0.02 vs. 0.50 +/- 0.03 mm; P < 0.001) than terminal follicles. CONCLUSIONS: Smaller intermediate hair follicles showed major morphological differences from terminal follicles in vivo and retained significant, biologically relevant differences in vitro in organ culture. Therefore, intermediate hair follicles offer a novel, exciting, more clinically relevant, albeit technically difficult, model for future investigations into hair growth. This should be particularly important for developing new therapies.
44

The biology of hair diversity.

Westgate, Gillian E., Botchkareva, Natalia V., Tobin, Desmond J. January 2013 (has links)
no / Hair diversity, its style, colour, shape and growth pattern is one of our most defining characteristics. The natural versus temporary style is influenced by what happens to our hair during our lifetime, such as genetic hair loss, sudden hair shedding, greying and pathological hair loss in the various forms of alopecia because of genetics, illness or medication. Despite the size and global value of the hair care market, our knowledge of what controls the innate and within-lifetime characteristics of hair diversity remains poorly understood. In the last decade, drivers of knowledge have moved into the arena of genetics where hair traits are obvious and measurable and genetic polymorphisms are being found that raise valuable questions about the biology of hair growth. The recent discovery that the gene for trichohyalin contributes to hair shape comes as no surprise to the hair biologists who have believed for 100 years that hair shape is linked to the structure and function of the inner root sheath. Further conundrums awaiting elucidation include the polymorphisms in the androgen receptor (AR) described in male pattern alopecia whose location on the X chromosome places this genetic contributor into the female line. The genetics of female hair loss is less clear with polymorphisms in the AR not associated with female pattern hair loss. Lifestyle choices are also implicated in hair diversity. Greying, which also has a strong genetic component, is often suggested to have a lifestyle (stress) influence and hair follicle melanocytes show declining antioxidant protection with age and lowered resistance to stress. It is likely that hair research will undergo a renaissance on the back of the rising information from genetic studies as well as the latest contributions from the field of epigenetics.
45

Topobiology of human pigmentation: P-cadherin selectively stimulates hair follicle melanogenesis

Samuelov, L., Sprecher, E., Sugawara, K., Singh, Suman K., Tobin, Desmond J., Tsuruta, D., Bíró, T., Kloepper, J.E., Paus, R. January 2013 (has links)
no / P-cadherin serves as a major topobiological cue in mammalian epithelium. In human hair follicles (HFs), it is prominently expressed in the inner hair matrix that harbors the HF pigmentary unit. However, the role of P-cadherin in normal human pigmentation remains unknown. As patients with mutations in the gene that encodes P-cadherin show hypotrichosis and fair hair, we explored the hypothesis that P-cadherin may control HF pigmentation. When P-cadherin was silenced in melanogenically active organ-cultured human scalp HFs, this significantly reduced HF melanogenesis and tyrosinase activity as well as gene and/or protein expression of gp100, stem cell factor, c-Kit, and microphthalmia-associated transcription factor (MITF), both in situ and in isolated human HF melanocytes. Instead, epidermal pigmentation was unaffected by P-cadherin knockdown in organ-cultured human skin. In hair matrix keratinocytes, P-cadherin silencing reduced plasma membrane β-catenin, whereas glycogen synthase kinase 3 beta (GSK3β) and phospho-β-catenin expression were significantly upregulated. This suggests that P-cadherin-GSK3β/Wnt signaling is required for maintaining the expression of MITF to sustain intrafollicular melanogenesis. Thus, P-cadherin-mediated signaling is a melanocyte subtype-specific topobiological regulator of normal human pigmentation, possibly via GSK3β-mediated canonical Wnt signaling.
46

The cell biology of human hair follicle pigmentation.

Tobin, Desmond J. 10 November 2010 (has links)
no / Although we have made significant progress in understanding the regulation of the UVR-exposed epidermal-melanin unit, we know relatively little about how human hair follicle pigmentation is regulated. Progress has been hampered by gaps in our knowledge of the hair growth cycle’s controls, to which hair pigmentation appears tightly coupled. However, pigment cell researchers may have overly focused on the follicular melanocytes of the nocturnal and UVR-shy mouse as a proxy for human epidermal melanocytes. Here, I emphasize the epidermis-follicular melanocyte pluralism of human skin, as research models for vitiligo, alopecia areata and melanoma, personal care/cosmetics innovation. Further motivation could be in finding answers to why hair follicle and epidermal pigmentary units remain broadly distinct? Why melanomas tend to originate from epidermal rather than follicular melanocytes? Why multiple follicular melanocyte sub-populations exist? Why follicular melanocytes are more sensitive to aging influences? In this perspective, I attempt to raise the status of the human hair follicle melanocyte and highlight some species-specific issues involved which the general reader of the pigmentation literature (with its substantial mouse-based data) may not fully appreciate.
47

Exploring Molecular Mechanisms Controlling Skin Homeostasis and Hair Growth. MicroRNAs in Hair-cycle-Dependent Gene Regulation, Hair Growth and Associated Tissue Remodelling.

Ahmed, Mohammed I. January 2010 (has links)
The hair follicle (HF) is a cyclic biological system that progresses through stages of growth, regression and quiescence, each being characterized by unique patterns of gene activation and silencing. MicroRNAs (miRNAs) are critically important for gene silencing and delineating their role in hair cycle may provide new insights into mechanisms of hair growth control and epithelial tissue remodelling. The aims of this study were: 1) To define changes in the miRNA profiles in skin during hair cycle-associated tissue remodelling; 2) To determine the role of individual miRNAs in regulating gene expression programs that drive HF growth, involution and quiescence; 3) and to explore the role of miRNAs in mediating the effects of BMP signalling in the skin. To address Aims 1 & 2, global miRNA expression profiling in the skin was performed and revealed marked changes in miRNAs expression during distinct stages of the murine hair cycle. Specifically, miR-31 markedly increased during anagen and decreased during catagen and telogen. Administration of antisense miR-31 inhibitor into mouse skin during the early- and mid-anagen phases of the hair cycle resulted in accelerated anagen development, and altered differentiation of hair matrix keratinocytes and hair shaft formation. Microarray, qRT-PCR and Western blot analyses revealed that miR-31 negatively regulates expression of Fgf10, the components of Wnt and BMP signalling pathways Sclerostin and BAMBI, and Dlx3 transcription factor, as well as selected keratin genes. Luciferase reporter assay revealed that Krt16, Krt17, Dlx3, and Fgf10 serve as direct miR-31 targets. In addition, miR-214 was identified as a potent inhibitor of the Wnt signalling pathway in the keratinocytes. Mutually exclusive expression patterns of miR-214 and ¿-catenin was observed during HF morphogenesis. MiR-214 decreases the expression of ¿-catenin and other components of Wnt signalling pathways c-myc, cyclin D1, and Pten in the keratinocytes. Luciferase reporter assay proved that ¿-catenin serves as a direct target of miR-214. In addition, miR-214 prevented translocation of ¿-catenin into the nucleus in response to the treatment with an activator of the Wnt signalling pathway lithium chloride, and abrogated the lithium-induced increase of the expression of the Wnt target gene VI Axin2. This suggests that miR-214 may indeed be involved in regulation of skin development and regeneration at least in part, by controlling the expression of ¿-catenin and the activity of the Wnt signalling pathway. To address Aim 3, the role of miRNAs in mediating the effects of the bone morphogenetic protein (BMP) signalling in the skin was explored. MiRNAs were isolated from the primary mouse keratinocytes treated with BMP4 and processed for analysis of global miRNA expression using the microarray approach. Microarray and real-time PCR analysis revealed BMP4-dependent changes in the expression of distinct miRNAs, including miR-21, which expression was strongly decreased in the keratinocytes after BMP4 treatment. In contrast, miR-21 expression was substantially higher in the skin of transgenic mice over-expressing BMP antagonist Noggin. Transfection of the keratinocytes with miR-21 mimic revealed existence of two groups of the BMP target genes, which are differentially regulated by miR-21. Thus, this suggests a novel mechanism controlling the effects of BMP signalling in the keratinocytes. Thus, miRNAs play important roles in regulating gene expression programs in the skin during hair cycle. By targeting a number of growth regulatory molecules, transcription factors and cytoskeletal proteins, miRNAs are involved in establishing an optimal balance of gene expression in the keratinocytes required for the HF and skin homeostasis.
48

Regulation of hair growth: Prostaglandins and prostamides. Studies confirming the growth stimulating effects of prostanoids and prostamides on human hair follicles in organ culture and locating their receptors using lipidomics, molecular biological and immunohistological approaches.

Khidhir, Karzan Ghafur January 2010 (has links)
Kurdistan Regional Government/Ministry of Higher Education and Scientific Research
49

Development of a novel, clinically-relevant model for investigating factors that stimulate human hair growth

Miranda, Benjamin H. January 2011 (has links)
Lack of hair due to alopecia or skin grafting procedures causes significant distress due to hair's role in social and sexual communication. Only limited pharmacological agents are currently available to stimulate hair growth; their development is hampered by inappropriate model systems. Most research involves large terminal scalp follicles rather than the clinical targets of tiny vellus or intermediate follicles. The overall aim of this thesis was to develop a novel model system based on intermediate hair follicles. Initially, intermediate follicles from female pre-auricular skin were characterised and compared to matched terminal follicles. Intermediate follicles were smaller, less pigmented, shorter and possessed a more 'tubular' bulb morphology than their more 'bulbous' terminal counterparts. Significant correlations were demonstrated between various hair follicle measurements and corresponding dermal papilla diameters. Isolated terminal follicles grew significantly more than intermediate hair follicles in organ culture for 9 days. Testosterone (10nM), the major regulator of human hair growth, increased only intermediate follicle growth; the anti-androgen, cyproterone acetate (1¿M), prevented this stimulation, unlike the 5¿-reductase type 2 inhibitor finasteride (40ng/ml). Immunohistochemistry demonstrated androgen receptor and 5¿-reductase type 2 proteins in both follicle types, while quantitative real-time PCR and gene microarray analysis detected their increased gene expression in intermediate follicles. Thus, smaller intermediate follicles showed major morphological and gene expression differences to terminal follicles in vivo and retained significant, biologically-relevant differences in vitro in organ culture including androgen-responsiveness. Therefore, intermediate hair follicles offer a novel, exciting, more clinically relevant, albeit technically difficult, model for future investigations into hair growth.
50

Cell Population Dynamics in Wound-Induced Hair Follicle Neogenesis Model

Helm, Maria, Loui, Juliane, Simon, Jan C., Ferrer, Ruben A. 27 October 2023 (has links)
Hair follicle (HF) regeneration can be achieved in the center of large full-thickness wounds on mouse backs (wound-induced HF neogenesis model, WIHN). Investigations with this model have allowed for the identification of some of the factors limiting the extent of fibrosis, which creates a permissive environment for the reposition of HF. For WIHN, specific subpopulations of cells rather than cell types are permissive to this process. Detailed information on the cellular composition in WIHN is not available. Here, we provide a description of changes in cell numbers of fibroblasts, HF dermal papilla, endothelial cells, keratinocytes (interfollicular epidermis, HF-infundibulum, HF-isthmus, HF-bulge (basal and suprabasal), HF-hair germ) and immune cells (macrophages, monocytes, dendritic cells, T cells (CD4+ , CD8+ , CD4+/CD8+ , regulatory T cells) and neutrophils) based on flow cytometric analysis. We compared unwounded skin with large wounds (1.5 × 1.5 cm) at different time points after wounding. We found that non-immune dermal cells have the largest share in the skin at all time points studied, and that the number of epidermal cells started increasing nine days after wounding, which precede isthmus cells and bulge cells, mirroring the development of hair follicles. Monocytes and neutrophils represent most myeloid cells in wounds and remain in wounds even beyond the inflammatory phase of wound healing. Macrophages can be identified as inflammatory and alternative cells and are also found in wounds even in the late remodeling phase of wound healing. Lastly, we provide information about T cells in large wounds. Most T cells in the wounds were CD8+ at all time points and expressed γδTCR, which was previously thought to be expressed mainly on CD4+ . We also report the existence of double positive CD4/CD8. Our study provides a guide in terms of time points suitable for the further study of cell subpopulations aiming to dissect the cellular heterogeneity in WIHN. Our results might set the base for the comparison of WIHN between control mice and animals manipulated to influence HF neogenesis and the full understanding of the responsible actors allowing for HF regeneration.

Page generated in 0.0403 seconds