Spelling suggestions: "subject:"haliaeetus"" "subject:"haliaetus""
1 |
Conservation Genetics of the White-Tailed EagleHailer, Frank January 2006 (has links)
<p>The white-tailed eagle is a formerly threatened raptor that is commonly used as a flagship and indicator species in conservation work. This thesis uses molecular genetic methods to study sex determination of nestlings, genetic variability, population structure and phylogeography of the white-tailed eagle.</p><p>Fourteen microsatellite markers were developed and tested for the white-tailed eagle.</p><p>A method to sex white-tailed eagle nestlings in the field is presented. The method is based on just one tarsus measure, and is suitable for situations where a single person is handling the nestlings alone in a treetop.</p><p>Most European white-tailed eagle populations underwent extreme declines during the 20th century. The results presented here show that bottlenecked populations have maintained significant levels of genetic diversity. Gene flow between regions is not a main explanation for this, as indicated by both genetic and ringing data. Instead, the long generation time of white-tailed eagles has acted as an intrinsic buffer against rapid loss of genetic diversity. Additionally, local conservation led to protection of more genetic diversity than if conservation had focused on the large remnant population in Norway.</p><p>Mitochondrial DNA of white-tailed eagles is structured in two main clades with a predominantly eastern and western Eurasian distribution. The clades likely correspond to separate Ice Age refugia but do not grant classification as evolutionary significant units given their current extensive overlap across large parts of Eurasia.</p><p>Microsatellite variation was studied in populations across Eurasia. Variability was rather constant across the continent, but clearly lower on Iceland and Greenland. This is best explained by founder effects during their colonisation, but only weak bottlenecks during colonisation of and persistence on the continent. Current population differentiation between Europe and eastern Eurasia is not compatible with a zero gene flow model but requires some amount of gene flow over evolutionary time scales.</p>
|
2 |
Conservation Genetics of the White-Tailed EagleHailer, Frank January 2006 (has links)
The white-tailed eagle is a formerly threatened raptor that is commonly used as a flagship and indicator species in conservation work. This thesis uses molecular genetic methods to study sex determination of nestlings, genetic variability, population structure and phylogeography of the white-tailed eagle. Fourteen microsatellite markers were developed and tested for the white-tailed eagle. A method to sex white-tailed eagle nestlings in the field is presented. The method is based on just one tarsus measure, and is suitable for situations where a single person is handling the nestlings alone in a treetop. Most European white-tailed eagle populations underwent extreme declines during the 20th century. The results presented here show that bottlenecked populations have maintained significant levels of genetic diversity. Gene flow between regions is not a main explanation for this, as indicated by both genetic and ringing data. Instead, the long generation time of white-tailed eagles has acted as an intrinsic buffer against rapid loss of genetic diversity. Additionally, local conservation led to protection of more genetic diversity than if conservation had focused on the large remnant population in Norway. Mitochondrial DNA of white-tailed eagles is structured in two main clades with a predominantly eastern and western Eurasian distribution. The clades likely correspond to separate Ice Age refugia but do not grant classification as evolutionary significant units given their current extensive overlap across large parts of Eurasia. Microsatellite variation was studied in populations across Eurasia. Variability was rather constant across the continent, but clearly lower on Iceland and Greenland. This is best explained by founder effects during their colonisation, but only weak bottlenecks during colonisation of and persistence on the continent. Current population differentiation between Europe and eastern Eurasia is not compatible with a zero gene flow model but requires some amount of gene flow over evolutionary time scales.
|
3 |
Difference in distribution between the White-tailed eagle and the Steller's sea eagle on their wintering grounds. : On Hokkaido, Japan.Eusebi, Bruno January 2021 (has links)
The White-tailed eagle (H. albicilla) and the Steller's sea eagle (H. pelagicus) overwinter in the same region of Japan: North-western Hokkaido. To examine how and if these two species compete at their overwintering grounds the following questions were asked: are they evenly distributed over this region and do they compete over space and resources? For the period 2015-2019, I found that the two species were not evenly distributed over the region, and that H. pelagicus is the most common species and does occur over the whole area. At a more detailed study at Lake Abashiri performed in 2019-2020, results showed that H. albicilla was the most common species, and that the distribution of the eagles was determined by the availability of food from anthropogenic activity. The species competed for food resource, fish, and H. pelagicus was the stronger competitor in terms of attacks against heterospecifics. They were less aggressive, but more successful when attacking compared to the White-tailed eagle.
|
4 |
A Multi-Scale Approach to Defining Historical and Contemporary Factors Responsible for the Current Distribution of the White-bellied Sea-Eagle Haliaeetus leucogaster (Gmelin, 1788) in AustraliaShephard, Jill, n/a January 2004 (has links)
The White-bellied Sea-Eagle Haliaeetus leucogaster is widespread in Australia, but has been the subject of conservation concern due to suggested localised declines and extinctions. Regionalised monitoring programmes have addressed some aspects of local concern, however a broader approach is needed to gain an understanding of large-scale processes affecting long-term persistence at scales equivalent to the species Australian range. Ultimately, the ability to predict change in population size over time accurately depends on the scale of analysis. By necessity, ecological studies using direct sampling techniques are often made across spatial scales smaller than a species geographic range and across relatively short time frames. This seems counter-intuitive considering that long-term species persistence is often dependent on large-scale processes. The principal aim of this thesis was to identify historical and contemporary forces responsible for the current pattern of population structure in H. leucogaster. This required a multi-scale approach, and the resulting research uses genetic, distributional and morphometric data. Haliaeetus leucogaster is a large territorial raptor that historically has been associated with coastal regions, lakes and perennial river systems. It has an extensive worldwide distribution from the western coast of India throughout the Indomalaysian region, Papua New Guinea and Australia. By virtue of the species' large-scale distribution, in Australia it is fairly cosmopolitan in its use of habitat and prey types. Haliaeetus leucogaster is monomorphic for adult plumage colouration, but in body size displays reversed sexual dimorphism with female birds significantly larger. A discriminant function based on 10 morphometric characters was 100% effective in discriminating between 19 males and 18 females that had been sexed using molecular genetic methods. Re-classification using a jackknife procedure correctly identified 92% of individuals. The discriminant function should be a viable alternative to genetic sexing or laparoscopy for a large proportion of individuals within the Australo-Papuan range of this species; and can also be used to identify a small proportion of "ambiguous" individuals for which reliable sexing will require those other techniques. I used mitochondrial (mtDNA) control region sequence data to investigate the current distribution of genetic variation in this species at the continental level and within and between specified regional units. I was specifically interested in identifying breaks in genetic connectivity between the west and east of the continent and between Tasmania and the Australian mainland. Overall, genetic diversity was low and there was no significant level of genetic subdivision between regions. The observed genetic distribution suggests that the population expanded from a bottleneck approximately 160 000 years ago during the late Pleistocene, and spread throughout the continent through a contiguous range expansion. There is insufficient evidence to suggest division of the population into different units for conservation management purposes based on the theoretical definition of the 'evolutionary significant unit'. It is clear from the analysis that there are signatures of both historical and contemporary processes affecting the current distribution. Given the suggestion that population expansion has been relatively recent, additional sampling and confirmation of the perceived pattern of population structure using a nuclear marker is recommended to validate conservation monitoring and management at a continental scale. To determine the existence of perceived population declines across ecological time scales, I analysed the Australian Bird Atlas Data to identify the extent and pattern of change in range and density of the species between three Atlas Periods (1901-1976, 1977-1981 and 1998-2001) using a new standardised frequency measure, the Occupancy Index (OI) for 1° blocks (approx. 100km2) across the continent. At the continental scale, there was no significant difference in the spatial extent of occupancy between Atlas Periods. However, there were considerable changes in frequency and range extent between defined regions, and there were distinct differences in the pattern of change in OI between coastal and inland blocks over time. Coastal blocks showed much more change than inland blocks, with a clear increase in the use of coastal blocks, accompanied by a decrease in inland blocks, during the 1977-1981 Atlas Period, relative to both other Atlas Periods. The over-riding factor associated with distributional shifts and frequency changes was apparently climatic fluctuation (the 1977-1981 period showing the influence of El Nino associated drought). The impression of abundance was strongly dependent on both the temporal and spatial scale of analysis. To test for correspondence between geographic variation in morphology and geographic variation in mtDNA I analysed morphometric data from 95 individuals from Australia and Papua New Guinea. First, the degree of morphometric variation between specified regions was determined. This was then compared with the pattern of genetic differentiation. There was a strong latitudinal cline in body dimensions. However, there was no relationship between morphometric variation and patterns of genetic variation at least for mtDNA. Females showed a pattern of isolation by distance based on morphometric characters whereas males did not. Three hypotheses to explain the pattern of morphometric variation were considered: phenotypic plasticity, natural selection and secondary contact between previously isolated populations. I conclude that the pattern of morphometric variation is best explained by the suggestion that there is sufficient local recruitment for natural selection to maintain the observed pattern of morphometric variation. This implies that gene flow may not be as widespread as the mtDNA analysis suggested. In this instance either the relatively recent colonisation history of the species or the inability of the mtDNA marker to detect high mutation rates among traits responsible for maintaining morphometric variation may be overestimating the levels of mixing among regions. As might be expected given the physical scale over which this study was conducted, the pattern of genetic, morphometric and physical distribution varied dependent on the scale of analysis. Regional patterns of genetic variation, trends in occupancy and density and morphometric variation did not reflect continental patterns, reinforcing the contention that extrapolation of data from local or regional levels is often inappropriate. The combined indirect methodologies applied in this study circumvent the restrictions imposed by direct ecological sampling, because they allow survey across large geographic and temporal scales effectively covering the entire Australian range of H. leucogaster. They also allow exploration of the evolutionary factors underpinning the species' current distribution.
|
5 |
Establishing conservation management for avian threatened speciesPonnikas, S. (Suvi) 18 February 2014 (has links)
Abstract
The protection of endangered species requires knowledge about the habitat requirements and the genetic issues related to the population viability. In this doctoral thesis, I defined the breeding habitat features of the Finnish populations of the Golden Eagle (Aquila chrysaetos) and the Peregrine Falcon (Falco peregrinus) by applying habitat suitability modelling. Secondly, I studied the conservation genetic issues of the Finnish population of the White-tailed Eagle (Haliaeetus albicilla) and the two Reed Bunting subspecies Emberiza schoeniclus witherbyi and E.s. lusitanica met in the Iberian Peninsula. All study populations are classified as threatened according to IUCN classification and they have experienced declines in population sizes in recent history. My results from habitat suitability models showed that human-induced changes in habitat threaten the Golden Eagle in Finland. The relative suitability for the species presence dropped to zero when the proportion of human altered landscape (agricultural or urbanized areas) in the core of the breeding habitat (4 km2) was more than 5%. Models further showed that habitat structure influences breeding habitat selection of the Peregrine Falcon, as it favours well-connected areas of open peatlands. Therefore, fragmentation (i.e., decreasing the connectivity) of open peatlands decreases the habitat quality for the species. The White-tailed Eagle has recovered mainly through local growth, but my results suggest that gene flow from neighbouring populations has had an impact as well, and has enhanced the genetic viability of the Finnish population. The current structure of the two subpopulations (one along the Baltic Sea coast line and another inland in Northern Finland) results mainly from the species’ ecology (i.e., philopatric behaviour), not from the recent population bottlenecks. The effective population size estimate of the coastal subpopulation of White-tailed Eagle was below the critical size needed to maintain evolutionary potential. The estimates of the effective population sizes for E.s. lusitanica and E.s. witherbyi and inland subpopulation of White-tailed Eagle were close or below the critical level of 50, which makes them prone to losing fitness due to inbreeding depression in the short term. Therefore, these study populations need to increase in size in order to secure population viability in the future. / Tiivistelmä
Ihmisen aiheuttamat elinympäristöjen muutokset uhkaavat biodiversiteettiä kasvattamalla yhä useampien eliölajien sukupuuttoriskiä. Tehokkaat suojelutoimenpiteet edellyttävät tietoa uhanalaisten lajien elinympäristövaatimuksista sekä populaation elinkyvylle keskeisistä geneettisistä tekijöistä. Tarkastelen väitöskirjatyössäni maakotkan (Aquila chrysaetos) sekä muuttohaukan (Falco peregrinus) Suomen populaatioiden pesimäympäristön piirteitä maisemaekologisen mallinnuksen avulla. Toiseksi tarkastelen Suomen merikotkapopulaation (Haliaeetus albicilla) sekä Iberian niemimaalla esiintyvien pajusirkun alalajien Emberiza schoeniclus witherbyin ja E.s. lusitanican suojelun kannalta tärkeitä geneettisiä tekijöitä. Kaikki tutkimuspopulaatiot ovat uhanalaisia ja ne ovat kärsineet voimakkaista kannan pienenemisistä. Maisemaekologiset mallit osoittivat maakotkan välttävän ihmisen muokkaamaa ympäristöä (maatalousalueet ja rakennetut alueet). Lajin esiintymistodennäköisyys laski nopeasti nollaan, kun ihmisen muokkaaman ympäristön osuus nousi yli 5 prosenttiin pesimäympäristön ydinalueella (4 km2). Mallit osoittivat maiseman rakenteen vaikuttavan muuttohaukan habitaatinvalintaan, sillä se suosi pesimäympäristönään kytkeytyneitä avosoita. Avosoiden pirstoutuminen (l. kytkeytyneisyyden väheneminen) vähentää näin ollen muuttohaukan pesimäympäristön laatua. Merikotkapopulaatio on toipunut pääosin paikallisen kasvun myötä, mutta tulokseni viittaavat myös siihen, että geenivirta naapurimaiden populaatioista on lisännyt Suomen populaation geneettistä muuntelua. Nykyinen rakenne (rannikon ja Lapin alapopulaatiot) on seurausta lajin synnyinpaikkauskollisuudesta, ei niinkään populaatiokoon romahduksista. Rannikon merikotkapopulaation efektiivinen koko jäi alle kriittisen rajan, joka tarvitaan evolutiivisen potentiaalin säilymiselle. Pajusirkun alalajien sekä Lapin merikotkapopulaation efektiiviset populaatiokoot olivat lähellä kriittisenä pidettyä 50:tä tai jäivät alle, joten ne ovat vaarassa menettää kelpoisuutta sukusiitosdepression seurauksena lyhyellä aikavälillä. Sekä pajusirkun alalajien että merikotkapopulaatioiden tulee sen vuoksi kasvaa säilyäkseen elinvoimaisina tulevaisuudessa.
|
6 |
Analýza fotografických záznamů nerybí kořisti v potravě vybraných druhů rybožravých ptáků / Analysis of photo-records of non-fish prey in the diet of selected species of fish-eating birdsMach, Jakub January 2021 (has links)
Piscivorous birds are often blamed for causing significant damage to fish stocks. Various methods are used to determine the composition of their food, each of them has limits in its ability to determine the complete food spectrum. This work maps the complete food composition of 14 species of fish-eating birds with a method that is not commonly used. Method used in this work uses analysis of publicly available photos on Google.com. In addition to the complete composition of the food, the species composition of the non-fish part of the prey was also determined, and in the case of the Great Cormorant (Phalacrocorax carbo), also the length of the fishes it catches. The aim of this work is to reveal the usability of this method for these purposes. A total of 2350 retrieved photographs were analyzed. The results obtained by photo analysis are in all cases compared with data in the available literature. For representatives of heron birds (Ardeidae), the analysis of photographs provided good information on the food spectrum of individual birds and on the qualitative composition of the non-fish component. It also provided relatively good information on the diet of the White-tailed Eagle (Haliaeetus albicilla), but the bird part of the prey was slightly underestimated. In the diet of the Great Crested Grebe...
|
Page generated in 0.0357 seconds