Spelling suggestions: "subject:"haliotis midas"" "subject:"haliotis miden""
11 |
The characterization of an intracellular protozoan parasite infecting the digestive gland of abalone, Haliotis midaeCloete, Yolandi Clignet 19 April 2010 (has links)
M.Sc. / Abalone are among the world’s leading shellfish consumed by human populations. Harvesting in California began in the late 1800s from intertidal zones and in the early 1900s wild abalone were collected by diving. Popular demand for abalone products in the Far East then led to extensive harvesting of wild abalone and a drastic decline in population numbers. This problem was overcome to a degree by the development of land-based abalone farms. At these farms it was possible to breed abalone on a large scale. Currently twelve abalone farms operate in South Africa and the estimated production for 2006 was 537 tons of meat, worth R 80 mil. Parasites and diseases pose threats to the production of abalone, especially under farmed conditions, and can cause considerable financial loss. Labyrinthuloides haliotidis, Haplosporidium nelsoni and Terebrasabelle heterouncinata are a few parasites that contribute to the above mentioned problems. Lately, a new protozoan parasite was discovered in the digestive glands of Haliotis midae farmed in the Western Cape Province, during routine health assessments. For the purposes of this dissertation it is designated an unidentified digestive gland parasite (UDP). The aims of this study are thus to undertake a comprehensive literature review of parasites infecting wild and farmed abalone, as well other shellfish species, describe and characterise the UDP infecting the digestive gland of Haliotis midae based on its structure and ultrastructure, evaluate the role of this parasite in disease by analysing data from histological studies, provide a preliminary indication of the life cycle of this parasite, attempt analysis of DNA from the UDP, and identify potential areas for further research into control of the parasite. A total of 180 abalone, (Haliotis midae) were collected from three abalone farms in the Western Cape during May 2005, October 2005, January 2006 and January 2007. To establish whether this parasite also occurs in wild abalone, a single sampling (six H. midae and 28 H. spadicea) took place during 2006 in Tsitsikamma National Park. Collected farmed and wild abalone were weighed and measured, removed from their shells and then killed according to accepted methods before their digestive glands were removed.
|
12 |
Abalone nutrition – growth performance of Haliotis midae in relation to variable artificial feedsMohamed, Riaaz January 2020 (has links)
Magister Scientiae (Biodiversity and Conservation Biology) - MSc (Biodiv and Cons Biol) / Abalone are among the most expensive and sought-after seafood subjects. In South Africa, Haliotis midae is the only commercially significant abalone species and it has become increasingly sold on the global market. The importance of abalone as a mariculture subject has triggered extensive research into maximizing production, with particular emphasis on optimizing growth rates. This study aimed to assess the growth performance of Haliotis midae relative to 1) standard pelleted feed, and 2) kelp-inclusive pelleted feed. I assessed feed stability of the dietary treatments and growth parameters associated with abalone weight gain. Temperature and time of feed submersion were found to significantly affect feed stability. Although there were no significant differences in water stability between feeds, the kelp-inclusive feed produced significantly lower total suspended solids (TSS) than the standard pelleted feed at upper time-temperature combinations.
|
13 |
An epidemiological study of parasites infecting the South African abalone (Hiliotis midae) in Western Cape aquaculture facilitiesMouton, Anna 04 January 2011 (has links)
Global growth in aquaculture, referred to as the blue revolution, is seen by many to be the solution to future food scarcity. However, this growth has been accompanied by disease emergence. Disease emergence is inevitable when host populations are concentrated and densities exceed the threshold value for occurrence of outbreaks. Abalone farming is a relatively recent development and diseases of abalone are not well characterised. There have been relatively few systematic surveys of abalone diseases in the world. Much of the available information resulted from investigations of specific disease outbreaks, such as withering syndrome in California. The outstanding example of a formal survey of abalone health was conducted in Australia. A methodical survey of abalone health, encompassing all farms and including wild abalone, has never been done in South Africa. However, South Africa has for many years had a herd health program for abalone producers and this has generated the largest body of data on abalone disease occurrence in the world. Although these data have some shortcomings, it was felt that analysis could provide insights into the epidemiology of parasites in farmed Haliotis midae, as well as informing better surveillance techniques for the future. Data for abalone submitted from nine farms as part of the herd health management program during the period 1 January 2000 to 31 December 2004 were analysed. No wild abalone were included in these data and the only abalone species considered was the South African abalone or perlemoen, Haliotis midae. Data on the age of the abalone and their diet were obtained from the farms. The abalone originated from either flow through or recirculation systems. Each animal was weighed and measured at the laboratory. A standard set of tissue sections was fixed and processed for histology. Presence of parasites was recorded, as well as the sex and degree of gonad development. Once data had been captured in Excel, a series of tables was constructed from counts of infected and non infected abalone for all host and environmental factors contained in the data set. Charts of the tables were drawn. Where host and environmental factors appeared to interact, these data were also tabulated and charted. Statistical analyses of the data in Excel followed. All analyses were performed for sessile ciliates, renal coccidia, gut protozoa, digestive gland PAGE 2 OF 137 protozoa and rickettsia like prokaryotes. The rarity of trematode infections made meaningful analyses difficult. The chi square test, effect sizes and odds ratios were used to seek significant associations. When confounding and interaction were suspected, stratum specific odds ratios were calculated. The summary odds ratio used in this study was the Mantel Haenszel summary odds ratio. The Breslow Day test for interaction was performed when necessary. Confidence intervals were determined using the method of Woolf. The overall prevalence of the various parasites was very variable. Sessile ciliates were the most common, with a prevalence of 68.3%. Rickettsia like prokaryotes were found in 13.1% of animals. The other gut associated parasites were more scarce, with prevalences under five percent. Renal coccidia affected less than two percent of animals. Trematode infections were extremely rare, at a prevalence of 0.05%. The results of the chi square test showed a significant association between age and parasite prevalence for all parasites tested. Odds ratios were calculated comparing animals of 24 months and younger to those older than 24 months. In all cases, except trematode and left kidney coccidian infections, risk of parasite infection tended to increase with increasing age. For left kidney coccidian infections, risk of infection decreased with increasing age. Trends for body mass were similar to those for age, which is expected, as animals generally become larger with increasing age. A significant association between growth rate and parasite prevalence existed for some parasites. The chi square test showed a significant association between condition index and parasite prevalence for all parasites tested. A significant association between sex and parasite prevalence was found for all parasites tested. A significant association also existed between parasite prevalence and gonad development for sessile ciliates, renal coccidia and gut protozoa. There were significant differences in parasite prevalences between farms for all parasites tested. The South and West coasts were next compared using the chi square test. There were significant differences in parasite prevalences between coasts for only three of the parasites tested, namely renal coccidia, gut protozoa and rickettsia. Crude odds ratios showed that, with the exception of left kidney coccidia and trematodes, there was a greater risk of parasite infection on the West than the South coast. For left kidney coccidia, the risk was greater on the PAGE 3 OF 137 South coast. A chi square test was performed to examine the relationship between parasite prevalence in Hermanus and other areas. A significant difference was found for renal coccidia and gut associated parasites. The crude odds ratios for parasite prevalence in other areas compared to Hermanus were calculated. With the exception of sessile ciliates and trematodes, there was a greater risk of parasite infection in areas other than Hermanus. In the case of sessile ciliates, there was a greater risk within Hermanus than in other areas. Unfortunately, it was almost impossible to determine whether a seasonal effect exists for parasite prevalence from the available data. This was shown to be partly due to the effect of prevalence on individual farms. Significant differences in parasite prevalences between diets for all parasites tested were shown using the chi square test. To further test the strength of the association, odds ratios were calculated comparing only kelp and artificial feed. For right kidney coccidia and gut associated parasites, the odds ratios indicated a significantly increased risk of infection in animals receiving kelp compared to those on artificial feed. There was no difference in risk for sessile ciliates and left kidney coccidia. The majority of animals originated in flow through systems. The chi square test showed significant differences in parasite prevalences between systems for sessile ciliates, renal coccidia and rickettsia like prokaryotes. Odds ratios showed a significantly greater risk of sessile ciliate infections, but a smaller risk of left kidney coccidia, in animals in flow through systems when comparing only kelp fed animals. Age is likely to lead to increased prevalences if the risk of infection is constant over time and also if infections are retained. Physiological changes in the animals may also affect their risk of infection. A further important aspect of age in abalone relates to changes in husbandry. Increasing age may be the underlying reason for some of the prevalence patterns seen with mass and sex. The origin of the sample population was considered in terms of farm of origin as well as geographic area. Abalone production in the study area was highly concentrated, with approximately two thirds coming from six farms situated within ten kilometres of each another on the South coast and almost forty percent from Hermanus alone. The present study found no PAGE 4 OF 137 evidence of increased parasite prevalence in areas where abalone farming is concentrated. It was felt that this study could not generate much insight into seasonal occurrence, due to uneven distribution of variables between months. The relationship between diet and parasite prevalence was perhaps the most interesting aspect of this study and possible reasons for the association are explored. Lastly, the results indicated that parasite buildup in recirculation systems was not as problematical as may be expected. It is possible that the increased prevalence of left kidney coccidia in recirculation systems is linked to the resistance of the host population rather than to the dynamics of the actual system. The very low prevalence of sessile ciliates in recirculation systems could not be explained by examination of any other variable considered in this study. Overall, the prevalences of soft tissue parasites in Haliotis midae compared favourably with those found for parasites of other abalone species abroad. Measures which would tend to reduce parasite prevalence include separation of age groups and maintaining a relatively young population on the farm. Culling of underperforming animals is recommended. Kelp should not be used in animals of two years or younger. In older animals, there was still a greater risk associated with kelp than with artificial feed, but it was not as marked. Recirculation systems proved to be less associated with increased parasite prevalence than one may expect. The other major findings of this study did not lend themselves to practical application. / Dissertation (MSc)--University of Pretoria, 2010. / Production Animal Studies / unrestricted
|
14 |
Microsatellite genotyping of contributing broodstock and selected offspring of Haliotis midae submitted to a growth performance recording schemeRuivo, Nicola Ribeiro 12 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: The indigenous abalone Haliotis midae is one of the most remarkable and highly exploited species
of marine molluscs in South Africa. It is the only species of southern African Haliotidae to be
commercially reared and has been successfully cultured for almost two decades. Its short history of
domestication along with market demands and the need to develop efficiency in the production
process has resulted in an increased interest in the possible genetic improvement of this species.
The unhurried growth rate associated with H. midae is a cause of particular concern to the industry,
predominantly with regards to profitability and competitiveness in the market place. A modest
amount of work has so far been directed at establishing a means of enhancement for selective
breeding on the commercial level. Genetics plays a key role in the establishment of successful
improvement programmes in various aquaculture species. The aim of this study was to develop
species-specific microsatellite markers for the abalone and subsequently perform parentage
assignment on farm produced animals entered into a growth performance recording scheme.
Animals were obtained from the hatcheries of three commercial abalone farms situated in the
Walker Bay region in the Western Cape.
Microsatellites were isolated using the enrichment-based FIASCO method, and characterised into
perfect, imperfect and compound repeats according to the structural nature of their repetitive units.
From the partial gDNA libraries obtained and 365 screened colonies, a total of 54 loci were located.
PCR primers were designed for 36 markers and the 15 primer pairs that displayed loci with the
highest level of polymorphism were subsequently chosen for fluorescent labelling. The markers
were tested on a subset of 32 wild H. midae individuals to determine their usefulness and efficiency
in genotyping. Five markers, along with five others that were previously designed, were chosen for
assigning parentage to the animals submitted to the performance recording scheme. Three thousand
offspring from each of the three participating farms were equally divided and reared at five different
locations. From each location 20 fast growing and 20 slow growing juveniles, as well as the
broodstocks, were sampled and genotyped using the ten chosen microsatellite loci. Two farms had
60% of offspring unambiguously assigned to a single parental couple. Assignments showed
patterns of dominant male and female brooders, but no trend in brooders specifically contributing to
fast or slow growing offspring. Parentage assignment for the third farm was, however, unsuccessful
due to lack of broodstock data. In future, screening of all available broodstock will ensure
acquisition of relevant pedigree information. The results obtained in this study are an initial step in
the development of a genetic improvement programme for commercial Haliotis midae. / AFRIKAANSE OPSOMMING: Die inheemse skulpvis Haliotis midae is een van die mees merkwaardige en hoogs oorbenutte
mariene slakspesies in Suid-Afrika. Dit is die enigste suidelike Afrika Haliotidae spesie wat
kommersieel benut word en dit word al meer as twee dekades suksesvol geteel. Die spesie se kort
domestiseringsgeskiedenis, toenemende mark aanvraag en die behoefte om meer effektiewe
produksie daar te stel, het gelei tot toenemende belangstelling in die moontlike genetiese
verbetering van die spesie. Die stadige groeitempo geassosieer met H. midae is veral ‘n punt van
kommer vir die industrie, veral in terme van winsgewendheid en kompetering in die markplek.
Minimale werk is sover gedoen in die daarstelling van verbetering deur selektiewe teling op ‘n
kommersiële skaal. Genetika speel ’n sleutelrol in die daarstelling van suksesvolle
verbeteringsprogramme van verskeie akwakultuur spesies. Die doel van hierdie studie was om
spesie-spesifieke mikrosatelliet merkers vir perlemoen te ontwikkel en vervolgens
ouerskapsbepaling van kommersiële diere, wat deelneem aan ‘n groeiprestasie aantekenstelsel, uit
te voer. Diere is voorsien deur die teelstasies van drie kommersiële perlemoenplase geleë in die
Walker Bay omgewing in die Wes-Kaap.
Mikrosatelliete is geïsoleer deur die verrykings-gebaseerde FIASCO metode, en gekarakteriseer as
perfekte, onderbroke of saamgestelde herhalings gebaseer op die strukturele aard van die herhalings
eenhede. Vanaf die gedeeltelik gDNA biblioteke wat bekom is en 365 gesifte kolonies, is ‘n totaal
van 54 loki opgespoor. PKR inleiers is ontwerp vir 36 merkers en die 15 inleierpare, wat loki met
die hoogste polimorfisme geamplifiseer het, is vervolgens geselekteer vir fluoreserende merking.
Die merkers is getoets op ’n kleiner groep van 32 natuurlike H. midae individue om hulle
bruikbaarheid en genotiperingseffektiwiteit te bepaal. Vyf merkers is saam met vyf reeds
ontwikkelde merkers gekies vir ouerskapsbepaling van die diere in die prestasie aantekenstelsel.
Drieduisend nageslag diere vanaf elkeen van die drie deelnemde plase is gelykop verdeel en
grootgemaak op die vyf verskillende lokaliteite. ‘n Monster van 20 vinnig groeiende en 20 stadig
groeiende jong perlemoen, sowel as broeidiere, is vanaf elke lokaliteit geneem en gegenotipeer deur
middel van die 10 geselekteerde mikrosatelliet loki. Sestig persent van twee van die plase se
nageslag is onteenseglik toegesê aan ‘n enkele ouerpaar. Ouerskapstoekenning het patrone van
dominante vroulike en manlike broeidiere getoon, maar geen tendens in terme van bydrae tot vinnig
en stadig groeiende nageslag kon gevind word nie. Ouerskapstoekenning vir die derde plaas was
onsuksesvol as gevolg van ’n gebrek aan data vir die broeidiere. In die toekoms sal genotipering
van alle beskikbare broeidiere die daarstelling van relevante stamboominligting verseker. Die
resultate verkry in hierdie studie verteenwoordig ‘n eerste stap in die ontwikkeling van ’n genetiese
verbeteringsprogram vir kommersiële Haliotis midae.
|
15 |
Towards understanding the effects of stocking density on farmed South African abalone, Haliotis Midae / Towards understanding stocking density of farmed South African abalone Haliotis midaeNicholson, Gareth Hurst January 2014 (has links)
The profitability of abalone farms is heavily influenced by their production per unit of grow-out space. With farms having physically expanded to the maximum, and with increasing production costs, one of the most realistic ways for farms to increase their production is through optimizing stocking densities. The effect of stocking density on Haliotis midae performance is undocumented and optimal stocking densities for this species have not been determined. Experiments were conducted under farm conditions to investigate the effects of four different stocking densities (16 %, 20 %, 22 % and 24 % of available surface area) on growth, production and health of three different size classes of abalone (15-35 g, 45-65 g, and 70-90 g start weight). Each treatment was replicated four times and trials ran over a period of eight months with measurements being made at four month intervals. Abalone behaviour was observed during the trials in the experimental tanks. Weight gain per abalone decreased with an increase in density for all tested size classes (5.04 ± 0.18 to 2.38 ± 0.17; 5.35 ± 0.21 to 4.62 ± 0.29; 7.97 ± 0.37 to 6.53 ± 0.28 g.abalone-1.month-1 for the 15-35, 45-65 and 70-90 g classes respectively, with an increased density of 16 to 24 %). Individual weight gain of 15-35 g abalone was similar at stocking densities of 16 % and 20 % while weight gain of 45-65 g and 70-90 g abalone decreased when density was increased above 16 %. Biomass gain (kg.basket-1.month-1) was not affected by stocking density in the 15-35 g and 45-65 g size classes (1.29 ± 0.02 and 0.97 ± 0.02 kg.basket-1.month-1 respectively). However, the biomass gained by baskets stocked with 70-90 g abalone increased with stocking density (1.08 ± 0.02 to 1.33 ± 0.02 kg.basket-1.month-1) with an increased density of 16 to 24 %) and did not appear to plateau within the tested density range (16 to 24 %). Food conversion ratio did not differ significantly between densities across all size classes. Stocking density did not have a significant effect on abalone condition factor or health indices. The proportion of abalone above the level of the feeder plate increased with density (7.26 ± 1.33 to 16.44 ± 1.33 with an increased density of 16 to 24 %). As a proportion of abalone situated in the area of the basket, the same proportions were situated on the walls above the feeder plate and on the feeder plate itself irrespective of stocking density (p > 0.05). Higher proportions of animals had restricted access to feed at higher stocking densities (p = 0.03). The amount of formulated feed available on the feeder plate did not differ between stocking densities throughout the night (p = 0.19). Individual abalone spent more time above the feeder plate at higher stocking densities (p < 0.05). The percentage of time above the feeder plate, spent on the walls of the basket and on the feeding surface was not significantly different at densities of 20 %, 22 % and 24 % (p > 0.05) but abalone stocked at 16 % spent a greater percentage of time above the feeder plate on the feeding surface (83.99 ± 6.26 %) than on the basket walls (16.01 ± 6.26 %). Stocking density did not affect the positioning of abalone within a basket during the day or at night. Different size H. midae are affected differently by increases in stocking density in terms of growth performance. Findings from this research may be implemented into farm management strategies to best suit production goals, whether in terms of biomass production or individual weight gain. The fundamental mechanisms resulting in reduced growth at higher densities are not well understood, however results from behaviour observations suggest that competition for preferred attachment space and feed availability are contributing to decreased growth rates. With knowledge of abalone behaviour at different densities, innovative tank designs may be established in order to counter the reduction in growth at higher densities.
|
16 |
Growth and gonad size in cultured South African abalone, Haliotis midaeRiddin, Nicholas Alwyn January 2013 (has links)
According to farm records, cultured Haliotis midae (50-70 g.abalone⁻¹) were growing 10% slower in winter when compared to summer. This reduction in growth rate also coincided with enlarged gonads. Initial trials showed that there were differences in mean monthly growth rates ranging from 1.97 – 5.14 g abalone⁻¹ month⁻¹, and gonad bulk index (GBI) also varied between months (GBI range: 26.88 ± 12.87 to 51.03 ± 34.47). The investment of energy into gonad tissue growth did not compromise whole body growth as the abalone continued to gain weight throughout the reproductive periods, probably due to gonadal growth. Growth of this size class of abalone was not influenced by water temperature or day length, suggesting favourable on-farm culture conditions (regression analyses, p > 0.05). There is no need to implement a seasonal dietary regime. Cultured H. midae were fed artificial diets with different protein sources, including only soya, only fishmeal, a combination of soya and fishmeal, and these were compared to kelp-fed abalone. Kelp-fed abalone grew slower than those fed artificial feeds (p>0.05). Gonad growth was the greatest when soya meal was included in the diet (average GBI: 74.91 ± 23.31), while the average gonad size of abalone fed the fishmealbased diet had gonads which were 38% smaller, and kelp-fed abalone had gonads which were 75% smaller than those of the abalone fed on diets containing soya meal. The increased gonad mass in abalone fed on diets including soya meal could be attributed to phytoestrogenic activity, as a result of the presence of isoflavones found in the soya plant; this remains to be tested. The use of soya in brood stock diet development is advised. The influence of dietary protein to energy ratio (1.41 – 2.46 g MJ⁻¹) on growth and gonad size was tested. Protein and energy levels within the ranges tested (22 and 33% protein; 13.5 and 15.6 MJ kg⁻¹) did not interact to influence growth rates of cultured H. midae. GBI increased from 50.67 ± 4.16 to 83.93 ± 9.35 units as a function of dietary protein to energy ratio (y = 42.02 x⁰·⁸¹; r² = 0.19; regression analysis: F₁¸₃₈ = 8.9; p = 0.005). In addition, protein level influenced gonad size, with gonad growth being greater in abalone fed the high protein diet (factorial ANOVA: F₁¸₃₂ = 7.1, p = 0.012). Canning yields were reduced by 7% when the protein content was increased, while increasing the quantity of dietary energy improved canning yields by ~ 6% (one-way ANOVA: F₁¸₂₈ = 14.4, p= 0.001). The present study provided evidence that although growth rates are varying seasonally, reproductive investment is not hindering weight gain. Gonad growth can be influenced if desired by farms, depending on the level of soya inclusion, as well as the protein to energy ratio in the diet. Monthly variation in growth and gonad size, as well as the influence of diet on gonad growth were highlighted, and the implications for farm application and further research were discussed.
|
17 |
Effect of diet and sex-sorting on growth and gonad development in farmed South African abalone, Haliotis midaeAyres, Devin William Philip January 2014 (has links)
Abalone, Haliotis midae, farmers in South Africa that feed formulated diets reported a periodic drop in abalone growth during periods of increased gonad development. A large drop in abalone biomass was noticed after presumed spawning events. This study was aimed to determine the effect of diet and sex-sorting on gonad development in abalone. Experiments were conducted on a commercial abalone farm from July 2012 to the end of June 2013. Isonitrogenous and isoenergetic diets were formulated with two protein sources. A fishmeal and soybean meal (S-diet) diet and a fishmeal only (F-diet) diet were fed to abalone (50 - 70 g abalone⁻¹) over 12 months. Weight and length gain, gonad bulk index (GBI), visceral index (%) and meat mass index (%) were determined monthly and seasonally. A histological study on the female gonads was conducted. This study also included an experiment to test the effect of sex-sorting (70 - 80 g abalone⁻¹) on growth and body composition with treatments including males (M), females (F) and equal numbers of males and females (MF). Weight gain and length gain were faster in S-diet-fed abalone (RM-ANOVA, F ₍₁, ₁₆₎ = 7.77, p = 0.01; F ₍₁, ₆₉₎ = 49.9, p < 0.001, respectively). Gonad development was significantly affected by the inclusion of soybean meal with S-diet-fed abalone showing higher GBI-values than F-diet-fed abalone (RM-ANOVA, F ₍₁, ₃₃)= 16.22, p = 0.0003). Male abalone had higher GBI-values than females (RM-ANOVA, F ₍₁, ₃₃₎ = 39.87, p < 0.0001). There was no significant difference in average feed conversion ratio (FCR) between diets over time (RM-ANOVA, F ₍₁, ₂₁₎ = 0.008, p = 0.97). However, average FCR-values were significantly highest between November 2012 and March 2013, the presumed spawning season. The visceral mass (gut and gonad) as a proportion of whole mass (visceral index, %) was significantly higher in abalone fed the S-diet (RM-ANOVA; F ₍₁, ₆₉₎ = 68.06, p < 0.0001). There was no difference in meat mass index (%) between diets for both male and female abalone (RM-ANOVA; F ₍₇, ₂₄₈₎ = 0.80, p = 0.60; F ₍₇, ₂₄₁₎ = 1.7, p = 0.11,respectively). Meat mass index significantly decreased from September 2012 to February 2013 coinciding with the period of high GBI-values. The distribution of oocyte maturity stages differed between diets. The majority of oocytes within S-diet-fed abalone were fully mature stage 8 oocytes compared to a majority of stage 7 oocytes in F-diet-fed abalone. Histology corroborated peaks in GBI-values for abalone fed both diets. There was no significant difference in growth, GBI, visceral index (%) and meat mass index (%) between abalone sorted into monosex and mixed-sex populations. Thus, the presence of the opposite sex did not have an effect on growth and gonad mass in H. midae. The phytoestrogens daidzin, glycitin, genistin, daidzein, glycitein and genistein were present in soybean meal and only traceable amounts were found in the F-diet. This study provided evidence that soybean meal present in formulated feed affected growth and gonad development in H.midae. The difference in the distribution of the maturity stages of oocytes was affected by diet. Sex-sorting abalone into monosex and mixed-sex populations had no influence on weight and length gain and gonad development.
|
18 |
Population genetic structure and demographical history of South African abalone, Haliotis midae, in a conservation contextVan der Merwe, Aletta Elizabeth 03 1900 (has links)
Thesis (PhD (Genetics))--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: South African abalone, Haliotis midae, has been the subject of major concern
regarding its survival and conservation over the last decade or more. Being the only
one of five endemic species with commercial value, there is considerable interest and
urgency in genetic management and improvement of this species. Limited genetic
information and the increasing conservation concern of this species are considered
the key motivations for generating information on the micro- and macro-evolutionary
processes of H. midae, the overall objective of this study.
This study reported the first microsatellite and Single Nucleotide Polymorphism
(SNP) markers developed specifically for Haliotis midae. Both these marker types
were applied to elucidate the degree of gene flow in nine natural abalone populations
whilst testing for two contrasting hypotheses; panmixia versus restricted gene flow.
Data was analysed using a series of methodological approaches ranging from
traditional summary statistics to more advanced MCMC based Bayesian clustering
methods with and without including spatial information. Using only microsatellite data,
the historical demography of the species was also examined in terms of effective
population size and population size fluctuations. Finally, the evolutionary positioning
and origin of Haliotis midae with regards to other Haliotis species was investigated
based on mitochondrial and nuclear sequence data.
Both microsatellite and SNP data gave evidence for subtle differentiation between
West and East coast populations that correlates with a hydrogeographic barrier in the
vicinity of Cape Agulhas. Population substructure was supported by AMOVA, FCA
and Bayesian clustering analysis. Clustering utilizing spatial information further
indicated clinal variation on both sides of the proposed barrier with a region in the
middle coinciding with a secondary contact zone, indicating possible historical isolation during glacial periods. Overall, the similar degree of substructure observed
with both microsatellites and SNPs supported the existence of contemporary and/or
historical factors with genome-wide effect on gene flow. The population expansion
measured with the microsatellites was inconsistent with the known recent decline but
taking the species’ life cycle and large effective population size into account, a
shrinkage in population size will probably only be apparent in a few generations time.
On a macro-evolutionary scale, this study presents the first classification of South
African abalone as a monophyletic group within the Haliotidae family. The topology
based on the combined mitochondrial and nuclear dataset is highly suggestive of a
relatively recent radiation of the SA species from the Indo-Pacific basin.
The study concludes by describing the most likely factors that could have affected
overall population structure and makes suggestions on how the given genetic
information should be incorporated into strategies aimed towards the effective
management and conservation of Haliotis midae. / AFRIKAANSE OPSOMMING: Die Suid-Afrikaanse perlemoen, Haliotis midae, is oor die laaste dekade of meer
die onderwerp van groot bekommernis betreffende die spesie se oorlewing en
bewaring. Aangesien dit die enigste van vyf endemiese SA spesies is met
kommersiёle waarde, is daar besonderse belang en erns in die genetiese beheer en
verbetering van die spesie. Beperkte genetiese inligting en ‘n toenemende behoefte
om die spesie te bewaar is die hoof motivering agter die generering van informasie
rakende mikro- en makro-evolusionêre prosesse in Haliotis midae en is die oorhoofse
doel van hierdie studie.
Hierdie studie beskryf die eerste mikrosatelliete en enkel basispaar polimorfismes
wat ontwikkel is spesifiek vir Haliotis midae. Beide tipe merkers is aangewend om die
mate van gene vloei in nege wilde perlemoen populasies te ondersoek terwyl twee
hipoteses ondersoek is; panmiksie versus beperkte gene vloei. Data is geanaliseer
deur gebruik te maak van ‘n reeks metodieke benaderings wat wissel van tradisionele
opsommings statistieke tot meer gevorderde MCMC gebasseerde groeperings
metodes met of sonder die gebruik van geografiese data. Mikrosatelliet data is ook
aangewend om die historiese demografie van die spesie te bepaal in terme van
effektiewe populasie grootte asook veranderinge in populasie groottes. Laastens is
die evolusionêre posisionering en oorsprong van Haliotis midae teenoor ander
Haliotis spesies ondersoek deur gebruik te maak van mitokondriale en nukleêre DNA
volgorde data.
Beide mikrosatelliet en enkel basispaar polimorfisme data lewer bewys van ‘n
subtiele genetiese verskil tussen wes en ooskus populasies wat verband hou met ‘n
hidrografiese skeiding in die omgewing van Kaap Agulhas. Populasie struktuur is
ondersteun deur die analise van molekulêre variansie (AMOVA), faktoriale komponente analise asook Bayesiese groeperings analise. Groeperings analise wat
geografiese informasie insluit dui klinale genetiese variasie aan beide kante van die
skeiding aan met ‘n area in die middel wat ooreenstem met ‘n sekondêre kontak
gebied. In totaal, ondersteun die soortgelyke mate van struktuur verkry met beide die
mikrosatelliete en enkel basispaar polimorfismes die bestaan van hedendaagse en/of
historiese faktore met genoom wye invloed op gene vloei. Die toename in populasie
grootte vasgestel deur die mikrosatelliet data stem nie ooreen met die onlangse
afname waargeneem in die spesie nie, maar met inagneming van Haliotis midae se
lewenssiklus en groot effektiewe populasie grootte, sal die afname in populasie
grootte moontlik eers oor ‘n paar generasies na vore kom.
Op ‘n makro-evolusionêre skaal lewer hierdie studie die eerste klassifikasie van
Suid-Afrikaanse perlemoen as ‘n monofiletiese groep binne die Haliotidae familie. Die
topologie gebaseer op ‘n gesamentlike mitkondriale en nukleêre datastel is hoogs
aanduidend van ‘n relatiewe onlangse verspreiding van die Suid-Afrikaanse spesies
uit die Stille-Indiese Oseaan.
Die studie sluit af deur die mees algemene faktore te bespreek wat populasie
struktuur kon beïnvloed het en maak voorstelle op watter wyse hierdie genetiese
inligting aangewend kan word vir die effekiewe beheer en bewaring van Haliotis
midae.
|
19 |
Growth-related gene expression in haliotis midaeVan der Merwe, Mathilde 12 1900 (has links)
Thesis (PhD (Genetics))--University of Stellenbosch, 2010. / Includes bibliography. / ENGLISH ABSTRACT: The slow growth rate of Haliotis midae impedes the optimal commercial production of this most
profitable South African aquaculture species. To date, no comprehensive effort has been made to
identify genes associated with growth variation in farmed H. midae. The aim of this study was therefore
to investigate growth variation in H. midae and to identify and quantify the expression of selected
growth-related genes. Towards this aim, molecular methodologies and cell cultures were combined as a
time-efficient and economical way of studying abalone transcriptomics and cell biology.
Modern Illumina sequencing-by-synthesis technology and subsequent sequence annotation were used
to elucidate differential gene expression between two sibling groups of abalone demonstrating
significant growth variation. Following transcriptome sequencing, genes involved in growth and
metabolism, previously unknown in H. midae, were identified. The expression of selected target genes
involved in growth was subsequently analyzed by quantitative real-time PCR (qPCR).
The feasibility of primary cell cultures for H. midae was furthermore investigated by targeting embryo,
larval and haemolymph tissues for the initiation of primary cell culture. Larval cells and haemocytes
could be successfully maintained in vitro for limited periods. Primary haemocyte cultures demonstrated
to be a suitable in vitro system for studying gene expression and were subsequently used for RNA
extraction and qPCR, to evaluate differential growth induced by bovine insulin and epidermal growth
factor (EGF).
Gene expression was thus quantified in fast and slow growing abalone and in in vitro primary
haemocyte cultures treated with different growth stimulating factors. The results obtained from
transcriptome analysis and qPCR revealed significant differences in gene expression between large and
small abalone, and between treated and untreated haemocyte cell cultures. Throughout in vivo and in
vitro qPCR experiments, the up-regulation of genes involved in the insulin signaling pathway provides
evidence for the involvement of insulin in enhanced growth rate for various H. midae tissues.
Besides the regulation of target genes, valuable knowledge was also gained in terms of reference genes,
during qPCR experimentation. By quantifying the stable expression of two genes (8629, ribosomal
protein S9 and 12621, ornithine decarboxylase) in various tissues and under various conditions, suitable
reference genes, that can also be used in future H. midae qPCR studies, were identified.
By providing evidence at the transcriptional level for the involvement of insulin, insulin-like growth
factors (IGFs) and insulin-like growth factor binding proteins (IGFBPs) in improved growth rate of H.
midae, the relevance of investigating ways to stimulate insulin/IGF release in aquaculture species was
again emphasized. As nutritional administration remains the most probable route of introducing agents that can stimulate the release of insulin-related peptides, continuous endeavours to stimulate abalone
growth through a nutritional approach is encouraged.
This is the first time next generation sequencing is used towards the large scale transcriptome
sequencing of any haliotid species and also the first time a comprehensive investigation is launched
towards the establishment of primary cell cultures for H. midae. A considerable amount of sequence
data was furthermore annotated for the first time in H. midae. The results obtained here provide a
foundation for future genetic studies exploring ways to optimise the commercial production of H.
midae. / AFRIKAANSE OPSOMMING: Die stadige groeitempo van Haliotis midae belemmer die optimale kommersiele produksie van hierdie
mees winsgewende Suid-Afrikaanse akwakultuur spesie. Tot op hede is geen omvattende poging
aangewend om gene verwant aan groeivariasie in H. midae te identifiseer nie. Die doel van hierdie
studie was dus om groeivariasie in H. midae te ondersoek en om spesifieke groei-gekoppelde gene te
identifiseer en hul uitdrukking te kwantifiseer. Ter bereiking van hierdie doel is molekulêre metodes en
selkulture gekombineer as 'n en tydsbesparende en ekonomiese manier om perlemoen transkriptomika en
selbiologie te bestudeer.
Moderne Illumina volgordebepaling-deur-sintese tegnologie en daaropvolgende annotasie is gebruik
om verskille in geenuitdrukking tussen naby-verwante groepe perlemoen, wat noemenswaardige
groeivariasie vertoon, toe te lig. Na afloop van die transkriptoom volgordebepaling is gene betrokke by
groei en metabolisme, vantevore onbekend in H. midae, geïdentifiseer. Die uitdrukking van uitgesoekte
teikengene betrokke by groei is vervolgens ge-analiseer deur kwantitatiewe "real-time PCR" (qPCR). die lewensvatbaarheid van 'n primêre selkulture vir H. midae is ook ondersoek deur embrio, larwe en
hemolimf weefsels te teiken vir die daarstelling van primêre selkulture. Larweselle en hemosiete kon in
vitro suksesvol onderhou word vir beperkte periodes. Primêre hemosietkulture het geblyk 'n gepaste in
vitro sisteem te wees om geenuitdrukking te bestudeer en dit is vervolgens gebruik vir RNS ekstraksie
en qPCR, om differensiële groei, geïnduseer deur insulien en epidermale groeifaktor (EGF), te evalueer.
Geenuitdrukking is dus gekwantifiseer in vinnig- en stadiggroeiende perlemoen en in in vitro primêre
hemosiet selkulture wat behandel is met verskillende groei stimulante. Die resultate wat verkry is van
transkriptoomanalise en qPCR het noemenswaardige verskille in geenuitdrukking tussen groot en klein
perlemoen, en tussen behandelde en onbehandelde hemosiet selkulture uitgelig. Die op-regulering van
gene betrokke by die insulien sein-padweg, tydens in vivo en in vitro qPCR eksperimente, bied getuienis
vir die betrokkenheid van insulien in die verhoogde groeitempo van verskeie H. midae weefsels.
Benewens die regulering van teikengene is waardevolle kennis ook ingewin in terme van
verwysingsgene tydens qPCR eksperimentering. Deur die stabiele uitdrukking van twee gene (8629,
ribosomale proteien S9 en 12621, ornitien dekarboksilase) te kwantifiseer in verskeie weefsels en onder
verskeie kondisies is gepaste verwysingsgene, wat ook in toekomstige H. midae qPCR eksperimente
aangewend kan word, geïdentifiseer.
Deur getuienis vir die betrokkenheid van insulien, insuliensoortige groeifaktor en insuliensoortige
groeifaktor-bindingsproteïene by verbeterde groei van H. midae op transkripsievlak te bied, is die
toepaslikheid van bestudering van maniere om insulienvrystelling in akwakultuurspesies te stimuleer, beklemtoon. Aangesien voeding die mees waarskynlike roete is om middele wat insuliensoortige
peptiedvrystelling stimuleer daar te stel, word vogehoue pogings om perlemoengroei deur die regte
voeding te stimuleer, aangemoedig.
Hierdie is die eerste studie wat volgende generasie volgordebepaling (“next generation sequencing”)
gebruik vir die grootskaalse transkriptoom volgordebepaling van enige haliotied spesie. Dit is ook die
eerste keer dat ‘n omvattende ondersoek geloods word na die daarstelling van primêre selkulture vir H.midae. ‘n Aansienlike hoeveelheid volgorde data is ook vir die eerste keer geannoteer in H. midae. Die
resultate wat hier verkry is bied ‘n basis vir toekomstige genetiese studies wat maniere ondersoek om
die kommersiële produksie van perlemoen te optimiseer.
|
20 |
Identification of growth related quantitative Trait Loci within the abalone using comparative microsatellite bulked segregant analysisSlabbert, Ruhan 12 1900 (has links)
Thesis (PhD (Genetics))--Stellenbosch University, 2010. / ENGLISH ABSTRACT: The South African abalone, Haliotis midae, is a commercially valuable mollusc and is
mostly exported to the Far East. Genetics research on H. midae has increased
substantially since a genetic improvement programme was introduced in 2006 by
collaboration between Stellenbosch University, government and industry partners. The
development of molecular markers, QTL-mapping, gene-expression and genome
manipulations are the main focuses of the research currently being conducted. The end
goal is to create high quality and fast growing animals for the industry. The present study
focused on the development of microsatellite markers and the detection of quantitative trait
loci (QTL) affecting growth traits (shell length, shell width, wet weight) in this species. A
combination of three methods, namely selective genotyping and bulked segregant analysis
(pooling analysis), single marker regression and interval mapping were used to identify
putative QTL in two full-sib families from two different farmed locations. Additional methods
and protocols were developed that can assist the industry in other molecular research
aspects. A total of 125 microsatellite loci were characterised. A total of 82 of these loci
were isolated using second generation sequencing, a first for any abalone species. A
preliminary, low-density framework linkage map was constructed containing 50 loci that
mapped to 18 linkage groups. The observed genome length was 148.72cm with coverage
of ±47%. QTL analyses revealed two putative QTL for shell width and wet weight, with
17% and 15% variance explained, that mapped on one linkage group in the first family and
three putative QTL, for shell length, shell width and wet weight, with 33%, 28.5% and
31.5% variance explained, that mapped on one linkage group in the second family.
Additional methods and protocols developed include an automated high-throughput DNA
isolation protocol, a real-time PCR assay for H. midae x H. spadicea hybrid verification, a
triploid verification microsatellite assay and a pre- and post-PCR multiplex setup and
optimisation protocol. Future studies focussing on QTL and marker assisted selection
(MAS) should verify the QTL found in this study and also utilise additional family structures
and determine QTL-marker phase within the commercial populations. / AFRIKAANSE OPSOMMING: Die Suid-Afrikaanse perlemoen, Haliotis midae, is ’n kommersieel waardevolle
weekdier en word hoofsaaklik na die Verre-Ooste uitgevoer. Genetiese navorsing op H.
midae het aansienlik toegeneem sedert ’n genetiese verbeteringsprogram in 2006 deur
samewerking tussen die Universiteit van Stellenbosch, die regering en industrievennote
ingebring is. Die ontwikkeling van molekulêre merkers, KEL-kartering, geen-uitdrukking en
genoom manipulasies is die hooffokusse van die navorsing wat tans uitgevoer word. Die
einddoel is om hoë kwaliteit en snelgroeiende diere vir die industrie te skep. Die huidige
studie het op die ontwikkeling van mikrosatelliet merkers en die opsporing van
groeiverwante (skulplengte, -breedte en nat gewig) kwantitatiewe eienskap lokusse (KEL)
in hierdie spesie gefokus. ’n Kombinasie van drie metodes, naamlik selektiewe
genotipering en versamelde segregaat analise (samevoegingsanalise), enkel merker
regressie en intervalkartering is gebruik om waarskynlike KEL in twee vol-sibbe families
van twee verskillende produksiegebiede te identifiseer. Aanvullende metodes en protokolle
is ontwikkel wat die industrie in ander molekulêre navorsingsaspekte kan ondersteun. ’n
Totaal van 125 mikrosatelliet lokusse is beskryf. ’n Totaal van 82 van hierdie lokusse is
deur die gebruik van derde generasie volgordebepaling geïsoleer, ’n eerste vir enige
perlemoen spesie. ’n Voorlopige, laedigtheid raamwerkkoppelingskaart is saamgestel met
50 lokusse wat op 18 koppelingsgroepe gekarteer is. Die waarneembare genoomlengte
was 148.72cm met ’n dekking van ±47%. KEL-analises het twee waarskynlike KEL vir
skulpbreedte en nat gewig blootgelê wat 17% en 15% variasie verduidelik en is op een
koppelingsgroep in die eerste familie gekarteer asook drie waarskynlike KEL, vir
skulplengte, -breedte en nat gewig wat 33%, 28.5% en 31.5% variasie verduidelik en is op
een koppelingsgroep in die tweede familie gekarteer. Aanvullende metodes en protokolle
wat ontwikkel is, sluit ’n geoutomatiseerde hoë-deurgang DNS-isolasieprotokol, ’n intydse
PKR-proef vir H. midae x H. spadicea hibried verifikasie, ’n triploïed verifikasie
mikrosatellietproef en veelsoortige pre- en post-PKR opstelling en optimaliseringsprotokol
in. Toekomstige studies wat fokus op KEL en merker ondersteunde seleksie (MOS)
behoort die KEL wat in hierdie studie gevind is te verifieer en ook bykomende familie
strukture te benut om KEL-merker fases binne die kommersiële populasie te bepaal.
|
Page generated in 0.0618 seconds