• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 206
  • 40
  • 37
  • 32
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • Tagged with
  • 415
  • 415
  • 176
  • 99
  • 82
  • 68
  • 62
  • 59
  • 56
  • 53
  • 50
  • 48
  • 43
  • 40
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Acceptor defects in P-type gallium antimonide materials

Lui, Mei-ki, Pattie. January 2005 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2005. / Title proper from title frame. Also available in printed format.
92

An integrated continuous output linear power sensor using Hall effect vector multiplication

Mellet, Dieter Sydney-Charles. January 2002 (has links)
Thesis (M. Eng.)(Electronic)--University of Pretoria, 2003. / Summaries in Afrikaans and English. Includes bibliographical references.
93

Properties of low-dimensional systems

Lapilli, Cintia Mariela, January 2006 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2006. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (May 2, 2007) Vita. Includes bibliographical references.
94

Spinová dynamika v polovodičových strukturách založených na GaAs / Spin dynamics in GaAs-based semiconductor structures

Schmoranzerová, Eva January 2012 (has links)
This work is dedicated to the study of spin dynamics in systems based on the semiconductor gallium arsenide (GaAs) that are suitable for use in spintronic devices. We explored two types of model structures using experimental methods of ultrafast laser spectroscopy and transport measurements. In the ferromagnetic semiconductor (Ga,Mn)As, we investigated laser-induced magnetization precession. We found out that transfer of both energy and angular momentum from the circularly polarized laser light can trigger magnetization precession, the latter one being identified as a new phenomenon, the "optical spin transfer torque". Furthermore, we demonstrate the possibility to control the energy-transfer-induced magnetization dynamics both optically and electrically using piezo-stressing. When dealing with purely non-magnetic structures for spintronics, we studied the Spin-Injection Hall Effect (SIHE) in GaAs/AlGaAs heterostructures with a special type of spin- orbit (SO) coupling that are lithographically patterned to create nanodevices. We managed to observe precession of the electron spin in the SO field directly in the space domain by extending the original detection method. This finding, together with the direct detection of a pure spin current, helped to propose a working spin Hall effect transistor.
95

EXPLORATION OF NEW MULTIFUNCTIONAL MAGNETIC MATERIALS BASED ON A VARIETY OF HEUSLER ALLOYS AND RARE-EARTH COMPOUNDS

Pathak, Arjun Kumar 01 May 2011 (has links)
Magnetic, magnetocaloric, magnetotransport and magnetoelastic properties of Ni-Mn-X (X = In, and Ga) Heusler alloys and La-Fe-Si based rare earth compounds have been synthesized and investigated by x-ray diffraction, magnetization, strain, and electrical resistivity measurements. The phase transitions, magnetic, magnetocaloric, magnetotransport and magnetoelastic properties strongly depend on the composition of these systems. In Ni50Mn50-xInx with x = 13.5, magnetocaloric and magnetotransport properties associated with the paramagnetic martensitic to paramagnetic austenitic transformation were studied. It was shown that magnetic entropy changes (SM) and magnetoresistance (MR) associated with this transformation are larger and the hysteresis effect is significantly lower when compared to that associated with paramagnetic-ferromagnetic transitions or ferromagnetic-antiferromagnetic/paramagnetic transitions in other systems. The Hall resistivity and the Hall angle shows unusual behavior in the vicinity of the martensitic phase transition for Ni50Mn50-xInx with x = 15.2. The observed Hall resistivity and Hall angle are 50 μ*cm and , respectively. It was observed that the presence of Ge, Al and Si atoms on the In sites strongly affects the crystal structure, and the electric and magnetic behaviors of Ni50Mn35In15. It was found that the partial substitution of In atoms by Si in Ni50Mn35In15 results in an increase in the magnetocaloric effect, exchange bias and shape memory effect. In Ni50Mn35In15-xSix, the peak values of positive SM for magnetic field changes H = 5 T were found to depend on composition and vary from 82 Jkg-1K-1 for x = 1 (at T = 275 K) to 124 Jkg-1K-1 for x = 3 (at T = 239 K). The partial substitution of Ni by Co in Ni50Mn35In15 significantly improves the magnetocaloric effect and MR in the vicinity of martensitic transition. In addition, significantly large inverse SM and MR were observed at the inverse martensitic phase transitions of the Ga-based magnetic shape memory Heusler alloys Ni50-xCoxMn32-yFeyGa18. The phase transition temperatures and magnetic properties were found to be correlated with the degree of tetragonal distortion in these samples. In LaFe11.57Si1.43Bx the crystal cell parameters and Curie temperatures were found to increase linearly with increasing B concentration up to ~ 0.1 % and 9 %, respectively. It was found that the characteristics of the magnetocaloric effect of LaFe11.57Si1.43 can be adjusted by a change in B concentration in the LaFe11.57Si1.43Bx system. A study of the influence of a small substitution of Ni, Cu, Cr, and V for Fe in LaFe11.4Si1.6 revealed that the magnetic, magnetocaloric, and magnetovolume coupling constant is related to an increase in the average Fe-Fe interatomic distances, leading to a change in the d-d exchange interaction.
96

Use of whiskers as model systems for studying surface barriers in type II superconductors

James, M. S. January 2000 (has links)
No description available.
97

Transição de fase no efeito Hall, em camadas de inversão de materiais com gaps estreitos. / Phase transition in the Hall Effect in inversion layers, of materials with narrow gaps.

Marta Silva dos Santos 18 July 1989 (has links)
A Aproximação de Massa Efetiva para a função evnvelope multi-componente, na presença de uma interface, desenvolvida por Marques e Sham, será utilizada aqui, para materiais de gap estreito do grupo II-VI, da seguinte maneira: A) A forte interação entre bandas de condução e valência, nestes materiais, é justificada em um Hamiltoniano de Kane (6x6) modificado, contendo todas as ondas de Bloch propagantes e evanescentes. Na presença de uma interface, a função de onda eletrônica, &#936, é composta de uma onda de Bloch incidente, uma refletida e duas evanescentes, com a mesma energia E e momento paralelo k. Já que a estrutura da maioria dos isolantes utilizados são desconhecidos, a interface semicondutor-isolante por ser considerada como uma barreira infinita, de modo que, &#936, se anule na interface. Existe uma fina região de espessura &#945 na interface, onde o decaimento das ondas evanescentes é indispensável. Distante desta região, as ondas evanescentes possuem um papel insignificante e eventualmente anulam-se. O limite de &#945 &#8594 0 determina as condições de contorno para cada componente da função de onda envelope na interface. B) As condições de contorno são usadas para computar a estrutura de subbandas e o potencial auto-consistente para o Hg1-xCdxTe. A mais interessante característica é o afastamento dos estados de spin duplamente degenerados. Estes resultados serão utilizados para encontrarmos a dependência da energia das subbandas com um campo magnético perpendicular à interface. C) A magneto-condutividade longitudinal é calculada como função do campo magnético B &#8869. Efeitos das interações elétron-elétron e elétrons-impureza são levadas em conta nas aproximações de Hartee-Foch e auto-consistente de Born, respectivamente. Para uma interação elétron-impureza finita, encontram-se fatores de preenchimentos críticos dos níveis de Landau, onde transições de fase são observadas. Estes resultados explicam as descontinuidades presentes, em medidas experimentais, na magneto-resistividade longitudinal e transversal (Hall), em MISFET de Hg (Cd)Te. / The Effective Mass Approximation for multi-component envelope wave function in the presence of an interface in the MOSFET system, developed by Marques and Sham, will be used here, for II-VI narrow-gap semiconductors, in the following way: A) The strong interaction between conduction and valence bands, in these materials, is justified. The (6x6) Kane type modified Hamiltonian is used and the total wave function contains every propagating and evanescent waves. For an interface, the total function, &#936, is composed of one incident and one reflected and two evanescent Bloch waves, with energy E and parallel wave-vector k. Since the band structure of the most used insulators is usually not well known, the insulator-semiconductor interface can be assumed as an infinite barrier; therefore, the total wave-function there can set to zero. The semiconductor evanescent Bloch waves are indispensable in a thin layer, of thickness &#945, close to this region. Far away from the interface their role are insignificant and can be neglected. In the limit &#945 &#8594 0, the boundary condition for each the limit the total Bloch wave function, are derived. B) These boundary conditions are used to calculate the self-consistent electric subband and potential for MISFET of Hg1-xCdxTe. The subbands present a very important spin splitting, due to the internal electric field. C) The effect of a perpendicular magnetic field is also studied and the longitudinal magneto-conductivity are calculated. The effect of electron-electron and electron-impurity interactions are respectively accounted for in the Hartee-Fock and self-consistent Born approximations. For critical electron-impurity interaction, the Landau level filling shows a phase transition at a given fractional occupation (or magnetic field). These results are experimentally observed in both longitudinal and transverse (Hall) magneto-resistance for Hg(Cd)Te.
98

Optical control of polaritons: from optoelectronic to spinoptronic device concepts

Binder, R., Luk, S. M. H., Kwong, N. H., Lewandowski, P., Schumacher, S., Lafont, O., Baudin, E., Tignon, J., Lemaitre, A., Bloch, J., Chan, Ch. K. P., Leung, P. T. 08 May 2017 (has links)
Exciton-polaritons in semiconductor microcavities have been studied intensely, both with respect to their intriguing fundamental physical properties and with respect to their potential in novel device designs. The latter requires ways to control polaritonic systems, and all-optical control mechanisms are considered to be especially useful. In this talk, we discuss and review our efforts to control the polariton density, utilizing optical four-wave mixing instabilites, and the spin or polarization textures resulting from the optical spin Hall effect. Both effects are readily observable in the cavity's far-field emission, and hence potentially useful for optoelectronic and spinoptronic device applications.
99

Highly sensitive nano Tesla quantum well Hall Effect integrated circuits using GaAs-InGaAs-AlGaAs 2DEG

Sadeghi, Mohammadreza January 2015 (has links)
Hall Effect integrated circuits are used in a wide range of applications to measure the strength and/or direction of magnetic fields. These sensors play an increasingly significant role in the fields of automation, medical treatment and detection thanks largely to the enormous development of information technologies and electronic industries. Commercial Hall Effect ICs available in the market are all based on silicon technology. These ICs have the advantages of low cost and compatibility with CMOS technology, but suffer from poor sensitivity and detectability, high power consumption and low operating frequency bandwidths. The objective of this work was to develop and fabricate the first fully monolithic GaAs-InGaAs-AlGaAs 2-Dimensional Electron Gas (2DEG) Hall Effect integrated circuits whose performance enhances pre-existing technologies. To fulfil this objective, initially 2 µm gate length pHEMTs and 60/20 µm (L/W) Greek cross Hall Effect sensors were fabricated on optimised GaAs-In.18Ga.82As-Al.35Ga.65As 2DEG structures (XMBE303) suitable for both sensor and integrated circuit designs. The pseudomorphic high electron mobility transistors (pHEMTs) produced state-of-the-art output conductance, providing high intrinsic gain of 405, current cut-off frequency of 4.8 GHz and a low negative threshold voltage of -0.4 V which assisted in designing single supply ICs with high sensitivity and wide dynamic range. These pHEMTs were then accurately modelled for use in the design and simulation of integrated circuits. The corresponding Hall sensor showed a current sensitivity of 0.4 mV/mA.mT and a maximum magnetic DC offset of 0.35 mT at 1 V. DC digital (unipolar) and DC linear Hall Effect integrated circuits were then designed, simulated, fabricated and fully characterised. The DC linear Hall Effect IC provided an overall sensitivity of 8 mV/mT and a power consumption as low as 6.35 mW which, in comparison with commercial Si DC linear Hall ICs, is at least a factor of 2 more power efficient. The DC digital (unipolar) Hall Effect IC demonstrated a switching sensitivity of 6 mT which was at least ~50% more sensitive compared to existing commercial unipolar Si Hall ICs. In addition, a novel low-power GaAs-InGaAs-AlGaAs 2DEG AC linear Hall Effect integrated circuit with unprecedented sensitivity and wide dynamic range was designed, simulated, fabricated and characterised. This IC provided a sensitivity of 533 nV/nT, minimum field detectability of 177 nT (in a 10 Hz bandwidth) at frequencies from 500 Hz up to 200 kHz, consuming only 10.4 mW of power from a single 5 V of supply. In comparison to commercial Si linear Hall ICs, this IC provides an order of magnitude larger sensitivity, a factor of 4 higher detectability, 20 times wider bandwidth and over 20% lower power consumption (10.4 mW vs. 12.5 mW). These represent the first reported monolithic integrated circuits using a CMOS-like technology but in GaAs 2DEG technology and are extremely promising as complements, if not alternatives, to CMOS Si devices in high performance applications (such as high temperatures operations (>150 °C) and radiation hardened environment in the nuclear industry).
100

Une nouvelle génération d'étalons quantiques fondée sur l'effet Hall quantique / a new generation of quantum standard based on the quantum hall effect

Brun-Picard, Jérémy 07 December 2018 (has links)
Le futur Système International d'unités, fondé sur des constantes fondamentales, va permettre de profiter pleinement des étalons quantiques de résistance, de courant et de tension qui sont reliés à la constante de planck et à la charge élémentaire. Dans cette thèse, nous avons développé et étudié un étalon de résistance fondé sur l'effet Hall quantique (EHQ) dans du graphène obtenu par dépôt chimique en phase vapeur (propane/hydrogène) sur substrat de carbure de silicium. Nous avons réussi à montrer, pour la première fois, qu'un étalon de résistance en graphène pouvait fonctionner à des conditions expérimentales plus pratiques que son homologue en GaAs/AlGaAs, c'est-à-dire à des températures plus élevées (T⋍10 K), des champs magnétiques plus faibles (B ⋍ 3,5 T) et des courants de mesures plus importants (I⋍500 μA). Dans une optique de compréhension et d'amélioration, nous avons analysé la reproductibilité du processus de fabrication de barres de Hall, testé une méthode de modification de la densité électronique et étudié les mécanismes de dissipation en régime d'EHQ.Dans une seconde partie, nous avons démontré qu'il était possible de réaliser une source de courant quantique programmable et versatile, directement reliée à la charge élémentaire, en combinant les deux étalons quantiques de tension et de résistance dans un circuit quantique intégrant un comparateur cryogénique de courant. Des courants ont ainsi pu être générés dans une gamme allant de 1 μA jusqu'à 5 mA avec une incertitude relative jamais atteinte de 10⁻⁸. Nous avons également prouvé que cet étalon de courant, réalisant la nouvelle définition de l'ampère, pouvait être utilisé pour étalonner un ampèremètre. / The future International System of Units, based on fundamental constants, will allow to take full advantage of the quantum standards of resistance, current and voltage that are linked to the planck constant and the elementary charge only.In this thesis, we have developed and studied a resistance standard based on the quantum Hall effect in graphene obtained by chemical vapor deposition (propane/hydrogen) on silicon carbide substrate. For the first time we were able to show that a graphene resistance standard could operate at more practical experimental conditions than its counterpart in GaAs/AlGaAs, ie at higher temperatures (T⋍10 K), weaker magnetics fields (B ⋍ 3,5 T) and larger measurement currents (I⋍500 μA). From an understanding and improvement perspective, we have analyzed the fabrication process of the Hall bar and its reproducibility, tested a method to modify the electronic density, and investigated the quantum Hall effect dissipation mechanisms.In a second part, we have demonstrated that it was possible torealize a programmable and versatile quantum current source from the elementary charge, by combining the two quantum standards of voltage and resistance in a quantum circuit integrating a cryogenic current comparator. Currents were generated in the range from 1 μA to 5 mA, with a relative uncertainty never achieved before of 10⁻⁸. We have also showed that this current standard, realizing the new definition of the ampere, could be used to calibrate an ammeter.

Page generated in 0.0451 seconds