Spelling suggestions: "subject:"all effect"" "subject:"fall effect""
111 |
Interfacial skew tunneling in group III-V and group IV semiconductors driven by exchange and spin-orbit interactions; Study in the frame of an extended k.p theory / Effet Tunnel Hall Anormal à l’interface de semi-conducteurs contrôlé par les interactions d’échange et spin-orbite. Etude dans le cadre d’une approche k.p étendueDang, Thi Huong 09 November 2016 (has links)
Nous avons étudié par des méthodes numériques et en théorie k.p avancée les propriétés tunnel d’électrons et de trous dans des systèmes modèles et hétérostructures composés de semi-conducteurs impliquant des interactions spin-orbite de volume. Nous démontrons que le couplage entre les interactions spin-orbite et d’échange à l’interface de jonctions tunnel résulte en un fort contraste de transmission de porteurs selon le signe de la composante de leur vecteur d’onde dans le plan de la jonction. Cet effet conduit à un effet tunnel anormal d’interface que nous appelons « Effet Hall Tunnel Anormal » (ATHE). De façon similaire, des processus tunnel non-conventionnels se manifestant sur des isolants topologiques ont été prédits par d’autres auteurs. Alors que l’ensemble de ces effets Hall anormaux sont liés aux interactions spin-orbite, les effets tunnel anormaux diffèrent des effets Hall tunnel, des effets Hall et des effets Hall de spin par la forte amplitude prédite ainsi que par des phénomènes de chiralité. Ces propriétés possèdent un lien nontrivial avec la symétrie du système. L’ensemble de ces résultats démontre l’existence d’une nouvelle classe d’effets tunnel qui devaient être étudiés expérimentalement dans un futur proche. En ce qui concerne la bande de valence, nous démontrons, en utilisant un Hamiltonien 14x14 prolongeant un modèle 2x2, que le calcul décrivant l’ATHE repose sur un traitement subtil des états dits « spurious » (états non-physiques) et nous donnons quelques éléments d’amélioration et de compréhension. Dans ce mémoire de thèse, nous développons deux méthodes numériques pour résoudre le problème des états spurious en développant en parallèle des méthodes k.p respectivement à 14 bandes et 30 bandes afin de décrire des matériaux semiconducteurs à gap indirect. Les calculs menés dans la bande de valence d’hétérostructures semiconductrice incluant interfaces et barrières tunnel (approches 6x6 et 14x14) sans centre de symétrie d’inversion mettent en évidence des propriétés d’asymétrie équivalente à celles obtenues dans la bande de conduction. De tels effets sont interprétés, dans le cadre de calculs de perturbation en transport basés sur des techniques de fonctions de Green, par des effets chiraux orbitaux lors du branchement tunnel des fonctions évanescentes dans la barrière. / We report on theoretical, analytical and computational investigations and k.p calculations of electron and hole tunneling, in model systems and heterostructures composed of exchange-split III-V semiconductors involving spin-orbit interaction (SOI). We show that the interplay of SOI and exchange interactions at interfaces and tunnel junctions results in a large difference of transmission for carriers, depending on the sign of their incident in-plane wave vector (k//): this leads to interfacial skew-tunneling effects that we refer to as Anomalous Tunnel Hall Effect (ATHE). In a 2x2 exchange-split band model, the transmission asymmetry (A) between incidence angles related to +k// and -k// wave vector components, is shown to be maximal at peculiar points of the Brillouin zone corresponding to a totally quenched transmission (A = 100%). More generally, we demonstrate the universal character of the transmission asymmetry A vs. in-plane wavevector component, for given reduced kinetic energy and exchange parameter, A being universally scaled by a unique function, independent of the spin-orbit strength and of the material parameters. Similarly, striking tunneling phenomena arising in topological insulators have just been predicted. While they all are related to the spin-orbit directional anisotropy, ATHE differs from the tunneling Hall effect, spontaneous anomalous, and spin Hall effects, or spin-galvanic effect, previously reported for electron transport, by its giant forward asymmetry and chiral nature. These features have non-trivial connection with the symmetry properties of the system. All these results show that a new class of tunneling phenomena can now be investigated and experimentally probed.When valence bands are involved, we show (using 14x14 Hamiltonian and within a 2x2 toy model) that ATHE accurate calculations rely on a subtle treatment of the spurious (unphysical) states and we give an insight into the topology of the complex band structure. We introduce two numerical methods to remove spurious states and successfully, include them in 30-band codes able to describe indirect bandgap group-IV semiconductors. Calculations performed in the valence bands of model heterostructures including tunnel barriers, in both 6x6 and 14x14 k.p Hamiltonians without inversion asymmetry, more astonishingly highlight the same trends in the transmission asymmetry which appears to be related to the difference of orbital chirality and to the related branching (overlap) of the corresponding evanescent wave functions responsible for the tunneling current. Besides, we built an analytical model and developed scattering perturbative techniques based on Green’s function method to analytically deal with electrons and holes and to compare these results with numerical calculations. The agreement between the different approaches is very good. In the case of holes, the asymmetry appears to be robust and persists even when a single electrode is magnetic.
|
112 |
From the quantum Hall effect to topological insulators : A theoretical overview of recent fundamental developments in condensed matter physicsEriksson, Hjalmar January 2010 (has links)
<p>In this overview I describe the simplest models for the quantum Hall and quantum spin Hall effects, and give some general indications as to the description of topological insulators. As a background to the theoretical models I will first trace the development leading up to the description of topological insulators . Then I will present Laughlin's original model for the quantum Hall effect and briefly discuss its limitations. After that I will describe the Kane and Mele model for the quantum spin Hall effect in graphene and discuss its relation to a general quantum spin Hall system. I will conclude by giving a conceptual description of topological insulators and mention some potential applications of such states.</p>
|
113 |
From the quantum Hall effect to topological insulators : A theoretical overview of recent fundamental developments in condensed matter physicsEriksson, Hjalmar January 2010 (has links)
In this overview I describe the simplest models for the quantum Hall and quantum spin Hall effects, and give some general indications as to the description of topological insulators. As a background to the theoretical models I will first trace the development leading up to the description of topological insulators . Then I will present Laughlin's original model for the quantum Hall effect and briefly discuss its limitations. After that I will describe the Kane and Mele model for the quantum spin Hall effect in graphene and discuss its relation to a general quantum spin Hall system. I will conclude by giving a conceptual description of topological insulators and mention some potential applications of such states.
|
114 |
Mesures de couples de spin orbite dans des héterostructures métal lourde/ferromagnet à base de Pt, avec anisotropie magnétique planaire / Spin orbit torque measurements in Pt-based heavy metal/ferromagnetic heterostructures with in-plane magnetic anisotropyTrifu, Alexandru Vladimir 16 June 2017 (has links)
La loi de Moore est basée sur l’observation empirique qu’environ chaque deux années, le nombre de transistors dans des circuits denses intégrées double. Cette tendance s'est bien maintenue au cours des dernières décennies (années 1970 et suivantes). Cependant, la miniaturisation continue des transistors entraîne une augmentation significative des pertes d’énergie par le courant de fuite, ce qui augmente la consommation d'énergie de veille. Cette perte d’énergie est devenue un problème majeur dans la microélectronique pendant les dernières années, ce qui rend plus difficile le développement des nouvelles technologies. L’une des solutions est de placer des éléments mémoire non-volatile dans le puce, qui retiennent la configuration du transistor pendant la mise hors tension et permettent de le restaurer à la mise sous tension. Les Magnetic Random Access Memories (MRAM) sont considérées par l'ITRS comme un candidat crédible pour le remplacement potentiel de SRAM et de DRAM au-delà du nœud technologique de 20 nm. Bien que les exigences de base pour la lecture et l'écriture d'un élément de mémoire unique sont remplies, l'approche actuelle basée sur Spin Torque Transfer (STT) souffre d'un manque inné de la flexibilité. Le courant électrique entraine le retournement de l’aimantation de la couche ferromagnétique libre par le transfert du moment angulaire d’une couche ferromagnétique adjacent. Ainsi les éléments de mémoire basées sur STT ont deux terminaux dont les voies de courant pour « écriture » et « lecture » sont définies par la forme de «pillar». L’optimisation indépendant des paramètres d’écriture et de lecture reste, donc, très difficile. Au même temps, la densité de courant trop haute, nécessaire pour écrire, conduit à la vieillissement prémature du jonction tunnel. En conséquence, l’intégration MRAM dans la technologie du semi-conducteur reste, donc, difficile.Démonstrations récentes de reversement d’aimantation entrainées par l’injection d’un courant planaire dans des heterostructures métal lourd/ferromagnet ont attiré l’attention croissante sur les couples de spin basé sur le transfert du moment angulaire par l’effet Hall de spin et les effets d’interface. Contrairement à STT-MRAM, la SOT-MRAM a trois terminaux, dont les voies de courant pour « écriture » et « lecture » sont indépendantes. Cela permet d’améliorer les paramètres « écriture » et « lecture » de manière indépendante. Pour contrôler et optimiser les SOT il est nécessaire de comprendre très bien leur origine. Cela reste l’une des plus importantes questions dont on n’a pas une réponse définitive. Dans ce contexte, plusieurs études ont conclu sur un modèle basé seulement sur l’effet Hall de spin, en même temps que d’autres ont suggéré un modèle basé sur une contribution combiné de l’effet Hall de spin et l’effet d’interface.L’objectif de cette thèse est de réaliser une étude systématique sur les effets d’interface sur les SOT dans des heterostructures métal lourde/ferromagnet a base de Pt, avec aimantation planaire.Dans ce but, cette thèse explore trois voies différentes. Premièrement nous avons modifié le rapport entre les effets d’interface et les effets bulk en changeant l’épaisseur de la couche de Pt et en suivant l’évolution des SOT. En deuxième nous avons exploré des différents empilements métal lourde/ferromagnet afin d’étudier différentes interfaces. Finalement, nous avons changé les propriétés des interfaces soit par changer la structure cristalline soit par oxydation. La technique de mesure, la méthode d’analyse de données associé et les aspects théoriques nécessaires pour l’interprétation des données sont aussi détaillés dans ce manuscrit. / Moore’s law is based on empirical observation and states that every two years approximately, the number of transistors in dense integrated circuits doubles. This trend has held up well in the past several decades (1970s and onwards). However, the continuous miniaturisation of transistors brings about a significant increase in leakage current, which increases the stand-by power consumption. This energy loss has become a major problem in microelectronics during the last several years, making the development of new technologies more difficult. One of the solutions that can address this issue is to place non-volatile memory elements inside the chip, that retain the configuration of the transistor during power-off and allow to restore it at power-on. Magnetic Random Access Memories (MRAM) are considered by the ITRS as a credible candidate for the potential replacement for SRAM and DRAM beyond the 20 nm technological node. Though the basic requirements for reading and writing a single memory element are fulfilled, the present approach based on Spin Transfer Torque (STT) suffers from an innate lack of flexibility. The electric current drives the magnetization switching of a free ferromagnetic layer by transferring angular momentum from an adjacent ferromagnet. Therefore, STT-based memory elements are two terminal devices in which the “pillar” shape defines both the “read” and the “write” current paths. Independent optimisation of the reading and writing parameters is therefore difficult, while the large writing current density injected through the tunnel barrier causes its accelerated ageing, particularly for fast switching. Consequently, the integration of MRAM into semiconductor technology poses significant difficulties.Recent demonstrations of magnetization switching induced by in-plane current injection in heavy metal (HM)/ferromagnet (FM) heterostructures have drawn increasing attention to spin-torques based on orbital-to-spin momentum transfer induced by Spin Hall and interfacial effects (SOTs). Unlike STT-MRAM, the in-plane current injection geometry of SOT-MRAM allows for a three-terminal device which decouples the “read” and “write” mechanisms, allowing the independent tuning of reading and writing parameters. However, an essential first step in order to control and optimise the SOTs for any kind of application, is to better understand their origin. The origin of the SOTs remains one of the most important unanswered questions to date. While some experimental studies suggest a SHE (Spin Hall Effect)-only model for the SOTs, others point towards a combined contribution of the bulk (SHE) and interface (Rashba Effect and Interfacial SHE). At the same time, many studies start with a SHE only hypothesis and do not consider interfacial effects. Furthermore, there are not so many systematic studies on the effects of interfaces. This thesis tries to fill in this gap, by providing a systematic study on the effects of interfaces on the SOTs, in Pt-based NM/FM/HM multilayers with in-plane magnetic anisotropy. For this purpose, this thesis explores three different, but related avenues. First, we changed the interface/bulk effect ratio by modifying the Pt thickness and following the evolution of the SOTs. Second, we explored different HM/FM/NM combinations, in order to study different interfaces. And third, we changed the properties of the interfaces by changing the crystallographic structure of the interface and by oxidation. The measurement technique and associated data analysis method, as well as the theoretical considerations needed for the interpretation of the results are also detailed in this manuscript.
|
115 |
O acoplamento spin-órbita no estudo de fases topológicas em uma rede hexagonal de baricentros / The spin-orbit coupling in the study of topological phases in a hexgonal lattice of barycenterAcosta, Carlos Augusto Mera 22 April 2013 (has links)
Neste trabalho foram estudadas as fases topológicas não triviais presentes em sistemas formados pela deposição de átomos de grafeno. Encontramos que quando um átomo hibridiza fortemente com o grafeno, apresenta um momento magnético e um forte spin-órbirta é possível a formação de uma rede hexagonal de baricentros que efetivamente gera uma estrutura de bandas característica de um efeito hall quântico anômalo. Especificamente, determinamos que o Ru satisfaz estas características. Quando este metal é depositado em uma configuração triangular no grafeno ocorrem picos na densidade de estados localizados no centro geométrico (baricentro) dos triângulos formados pelos Ru. Estes picos estão distribuídos de forma hexagonal e efetivamente geram uma estrutura de bandas que nas proximidades do nível de Fermi apresenta uma configuração de spin característica do efeito Hall quântico anômalo. Adicionalmente, encontramos que o sistema composto pela absorção de Ba ou Sr no grafeno favorece a formação do efeito Hall quântico de spin. Neste sistema, o acoplamento spin-órbita (SOC) gera um gap mais de 1000 vezes maior ao período no grafeno prístino. Para o estudo destes sistemas, implementamos no código SIESTA a aproximação on-site do acoplamento spin-órbita via o formalismo dos pseudopotenciais relativísticos de norma conservada. Nossa implementação foi testada a partir do estudo de fenômenos já conhecidos: i) o strong spin-splitting gerado no grafeno pela adsorção de Au, ii) o efeito hall quântico de spin no poço quântico de HgTe/CdTe e, iii) a formação de estados topológicos na superfície do Bi2Se3 e as fases magnéticas deste material com átomos de Mn adsorvidos. / In this work, were studied the non-trivial topological phases present in systems formed by deposition of atoms in graphene. We found that when an atom hybridizes strongly with grapheme, has a magnetic moment and a strong spin-orbit it is possible the formation of a hexagonal network of barycentres that effectively generates a structure band characteristic of a quantum anomalous Hall effect. Specifically, we determined that Ru satisfies these characteristics. When this metal is deposited in a triangular configuration in grapheme, peaks occur in the density of localized states in the geometric center (centroid) of the triangles formed by Ru. These peaks are distributed in a hexagonal structure and effectively generates a band structure that near the Fermi level has a spin configuration characteristic of the spin quantum Hall effect anomalous. Additionally, we found that the system composed by the adsorption of Ba or Sr in grapheme, promotes the formation of spin quantum Hall effect. In this system, the spin-orbit coupling (SOC) generates a gap more than 1000 times grater that predicted in pristine praphene. To study these systems, wu implemented in the code SIESTA the on-site approach of the spin-orbit coupling throught the formalism of norm conserved relativistic pseudo potentials. Our implementation was tested from the study of phenomena already known: i) the strong spin-splitting generated in graphene by adsorption of Au, ii) the quantum spin Hall effect in quantum well of HgTe / CdTe and, iii) formation of topological states in the surface of Bi2Se3 and the magnetic of this material with Mn atoms adsorved.
|
116 |
O acoplamento spin-órbita no estudo de fases topológicas em uma rede hexagonal de baricentros / The spin-orbit coupling in the study of topological phases in a hexgonal lattice of barycenterCarlos Augusto Mera Acosta 22 April 2013 (has links)
Neste trabalho foram estudadas as fases topológicas não triviais presentes em sistemas formados pela deposição de átomos de grafeno. Encontramos que quando um átomo hibridiza fortemente com o grafeno, apresenta um momento magnético e um forte spin-órbirta é possível a formação de uma rede hexagonal de baricentros que efetivamente gera uma estrutura de bandas característica de um efeito hall quântico anômalo. Especificamente, determinamos que o Ru satisfaz estas características. Quando este metal é depositado em uma configuração triangular no grafeno ocorrem picos na densidade de estados localizados no centro geométrico (baricentro) dos triângulos formados pelos Ru. Estes picos estão distribuídos de forma hexagonal e efetivamente geram uma estrutura de bandas que nas proximidades do nível de Fermi apresenta uma configuração de spin característica do efeito Hall quântico anômalo. Adicionalmente, encontramos que o sistema composto pela absorção de Ba ou Sr no grafeno favorece a formação do efeito Hall quântico de spin. Neste sistema, o acoplamento spin-órbita (SOC) gera um gap mais de 1000 vezes maior ao período no grafeno prístino. Para o estudo destes sistemas, implementamos no código SIESTA a aproximação on-site do acoplamento spin-órbita via o formalismo dos pseudopotenciais relativísticos de norma conservada. Nossa implementação foi testada a partir do estudo de fenômenos já conhecidos: i) o strong spin-splitting gerado no grafeno pela adsorção de Au, ii) o efeito hall quântico de spin no poço quântico de HgTe/CdTe e, iii) a formação de estados topológicos na superfície do Bi2Se3 e as fases magnéticas deste material com átomos de Mn adsorvidos. / In this work, were studied the non-trivial topological phases present in systems formed by deposition of atoms in graphene. We found that when an atom hybridizes strongly with grapheme, has a magnetic moment and a strong spin-orbit it is possible the formation of a hexagonal network of barycentres that effectively generates a structure band characteristic of a quantum anomalous Hall effect. Specifically, we determined that Ru satisfies these characteristics. When this metal is deposited in a triangular configuration in grapheme, peaks occur in the density of localized states in the geometric center (centroid) of the triangles formed by Ru. These peaks are distributed in a hexagonal structure and effectively generates a band structure that near the Fermi level has a spin configuration characteristic of the spin quantum Hall effect anomalous. Additionally, we found that the system composed by the adsorption of Ba or Sr in grapheme, promotes the formation of spin quantum Hall effect. In this system, the spin-orbit coupling (SOC) generates a gap more than 1000 times grater that predicted in pristine praphene. To study these systems, wu implemented in the code SIESTA the on-site approach of the spin-orbit coupling throught the formalism of norm conserved relativistic pseudo potentials. Our implementation was tested from the study of phenomena already known: i) the strong spin-splitting generated in graphene by adsorption of Au, ii) the quantum spin Hall effect in quantum well of HgTe / CdTe and, iii) formation of topological states in the surface of Bi2Se3 and the magnetic of this material with Mn atoms adsorved.
|
117 |
Hall-Effect Current Sensors for Power Electronic Applications : Design and Performance ValidationKumar, Ashish January 2014 (has links) (PDF)
Closed loop Hall-effect current sensors used in power electronic applications require high bandwidth and small transient errors. For this, the behaviour of a closed loop Hall-e ect current sensor is modeled. Analytical expression of the step response of the sensor using this model is used to evaluate the performance of the PI compensator in the current sensor. Based on this expression a procedure is proposed to design parameters of the PI compensator for fast dynamic performance and for small transient error. A prototype closed loop Hall-effect current sensor is built in the laboratory. A PI compensator based on the procedure devised earlier is designed for the sensor.
A power electronic converter based current source is designed and fabricated in the labo-ratory for validation of steady state and transient performance of Hall-effect current sensors. A novel hardware topology is proposed, using which the same hardware set-up can produce both step current and sinusoidal current in its designated sections without any modi cation in the hardware con guration. It produces step current of controlled peak value upto 100A and controlled rate of change with both positive and negative dtdi . The step transition time is less than 200ns. The dtdi is adjustable upto a limit of 300A/ s to verify the dtdi following capability of the sensor. The same current source produces continuous sinusoidal current of controlled magnitude upto 75A peak and controlled frequency from 1Hz to 1000Hz. The magnitude and the frequency of the sinusoidal current can be varied on-line like a voltage function generator. The hardware of the current source is designed to consume minimal ac-tive power from mains during continuous sinusoidal current generation. This current source is used in experimental veri cation of the steady state and the transient performance of the designed laboratory current sensor. The transient performance of the laboratory current sensor is observed to be superior to state-of-the-art commercial current sensors available for power electronic applications.
|
118 |
A quantum hall effect without landau levels in a quasi one dimensional systemBrand, Janetta Debora 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: The experimental observation of the quantum Hall effect in a two-dimensional electron gas posed
an intriguing question to theorists: Why is the quantization of conductance so precise, given the
imperfections of the measured samples? The question was answered a few years later, when a
connection was uncovered between the quantum Hall effect and topological quantities associated
with the band structure of the material in which it is observed. The Hall conductance was revealed
to be an integer topological invariant, implying its robustness to certain perturbations.
The topological theory went further than explaining only the usual integer quantum Hall effect
in a perpendicular magnetic field. Soon it was realized that it also applies to certain systems in
which the total magnetic flux is zero. Thus it is possible to have a quantized Hall effect without
Landau levels.
We study a carbon nanotube in a magnetic field perpendicular to its axial direction. Recent
studies suggest that the application of an electric field parallel to the magnetic field would induce
a gap in the electronic spectrum of a previously metallic carbon nanotube. Despite the quasi onedimensional
nature of the carbon nanotube, the gapped state supports a quantum Hall effect and
is associated with a non zero topological invariant. This result is revealed when an additional
magnetic field is applied parallel to the axis of the carbon nanotube. If the flux due to this
magnetic field is varied by one flux quantum, exactly one electron is transported between the
ends of the carbon nanotube. / AFRIKAANSE OPSOMMING: Die eksperimentele waarneming van die kwantum Hall effek in ’n twee-dimensionele elektron gas
laat ’n interessante vraag aan teoretiese fisikuste: Waarom sou die kwantisasie van die geleiding
so presies wees al bevat die monsters, waarop die meetings gedoen word, onsuiwerhede? Hierdie
vraag word ’n paar jaar later geantwoord toe ’n konneksie tussen die kwantum Hall effek en
topologiese waardes, wat verband hou met die bandstruktuur van die monster, gemaak is. Dit
is aan die lig gebring dat die Hall geleiding ’n heeltallige topologiese invariante is wat die robuustheid
teen sekere steurings impliseer. Die topologiese teorie verduidelik nie net die gewone
kwantum Hall effek wat in ’n loodregte magneetveld waargeneem word nie. Dit is ook moontlik
om ’n kwantum Hall effek waar te neem in sekere sisteme waar die totale magneetvloed nul is.
Dit is dus moontlik om ’n gekwantiseerde Hall effek sonder Landau levels te hˆe.
Ons bestudeer ’n koolstofnanobuis in ’n magneetveld loodreg tot die aksiale rigting. Onlangse
studies dui daarop dat die toepassing van ’n elektriese veld parallel aan die magneetveld ’n
gaping in die elektroniese spektrum van ’n metaliese koolstofnanobuis induseer. Ten spyte van
die een-dimensionele aard van die koolstofnanobuis ondersteun die gapings-toestand steeds ’n
kwantum Hall effek en hou dit verband met ’n nie-nul topologiese invariante. Hierdie resultaat
word openbaar wanneer ’n bykomende magneetveld parallel tot die as van die koolstofnanobuis
toegedien word. Indien die vloed as gevolg van hierdie magneetveld met een vloedkwantum
verander word, word presies een elektron tussen die twee kante van die koolstofnanobuis vervoer.
|
119 |
Acceptor defects in P-type gallium antimonide materialsLui, Mei-ki, Pattie., 雷美琪. January 2005 (has links)
published_or_final_version / abstract / Physics / Doctoral / Doctor of Philosophy
|
120 |
The fractional quantum Hall regime in grapheneSodemann Villadiego, Inti Antonio Nicolas 18 September 2014 (has links)
In the first part of this work, we describe a theory of the ground states and charge gaps in the fractional quantum Hall states of graphene. The theory relies on knowledge of these properties for filling fractions smaller than one. Then, by the application of two mapping rules, one is able to obtain these properties for fractional quantum Hall states at arbitrary fillings, by conceiving the quantum Hall ferromagnets as vacua on which correlated electrons or correlated holes are added. The predicted charge gaps and phase transitions between different fractional quantum Hall states are in good agreement with recent experiments. In the second part, we investigate the low energy theory for the neutral Landau level of bilayer graphene. We closely analyze the way different terms in the Hamiltonian transform under the action of particle-hole conjugation symmetries, and identify several terms that are relevant in explaining the lack of such symmetry in experiments. Combining an accurate parametrization of the electronic structure of bilayer graphene with a systematic account of the impact of screening we are able to explain the absence of particle-hole symmetry reported in recent experiments. We also study the energetics of fractional quantum Hall states with coherence between n=0 and n=1 cyclotron quantum numbers, and obtain a general formula to map the two-point correlation function from their well-known counterparts made from only n=0 quantum numbers. Bilayer graphene has the potential for realizing these states which have no analogue in other two-dimensional electron systems such as Gallium Arsenide. We apply this formula to describe the properties of the n=0/n=1 coherent Laughlin state which displays nematic correlations. / text
|
Page generated in 0.0568 seconds