• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aktivierung und Reprimierung der Gasvesikelbildung in Haloferax mediterranei

Zimmermann, Peter. Unknown Date (has links)
Techn. Universiẗat, Diss., 2003--Darmstadt.
2

Glutamato deshidrogenasa NADP+ dependiente del Archaea Haloferax mediterranei: estudios cinéticos y características moleculares

Ferrer Casanova, Juan 22 September 1995 (has links)
El presente trabajo ha sido subencionado en parte por los proyectos: BI093-0660-CO4-03 CICYT y GV-1170793 Generalitat Valenciana.
3

Fisiología de la asimilación de nitrógeno en Haloferax mediterranei: purificación y caracterización de nitrato y nitrito reductasas asimilativas

Martínez-Espinosa, Rosa María 18 July 2003 (has links)
No description available.
4

GlnK regulatory proteins and their role in Haloferax mediterranei nitrogen metabolism

Pedro Roig, Laia 28 September 2012 (has links)
No description available.
5

Der Einfluss von Anaerobie und von Glucose auf die Gasvesikelbildung in halophilen Archaea

Hechler, Torsten. Unknown Date (has links)
Darmstadt, Techn. Universiẗat, Diss., 2007. / Dateien im PDF-Format.
6

Glutamina sintetasas recombinantes de Haloferax mediterranei

Vegara Luque, Anna 15 September 2018 (has links)
Haloferax mediterranei es un microorganismo halófilo extremo que se incluye dentro del Dominio Archaea. Es capaz de crecer utilizando carbohidratos, ácidos carboxílicos, alcoholes y aminoácidos como fuentes de carbono y energía. Además, puede crecer en medio definido en presencia de glucosa como única fuente de carbono, y con nitrato o nitrito como única fuente de nitrógeno a través de la vía de asimilación utilizando las nitrato y nitrito reductasas asimilativas. El nitrato lo utiliza reduciéndolo a amonio, el cual es incorporado a esqueletos carbonados vía glutamato deshidrogenasa (GDH) en condiciones de exceso de nitrógeno o mediante la ruta glutamina sintetasaglutamato sintasa (GS-GOGAT) bajo condiciones de deficiencia de nitrógeno. La glutamina sintetasa (GS; EC 6.3.1.2) se encuentra en todos los Dominios, que participa en la asimilación del amonio y en la biosíntesis de glutamina, actuando como donador de nitrógeno para la síntesis de proteínas y de ácidos nucleicos. Esta enzima cataliza la biosíntesis de glutamina mediante la reacción biosintética dependiente de magnesio o manganeso, a partir de glutamato, ATP y amonio. En el genoma de Hfx. mediterranei se localizaron tres genes que presentaron homología con glutamina sintetasa, en base a la presencia de tres dominios conservados (COG0174: transporte y metabolismo de aminoácidos; pfam00120: dominio catalítico y pfam03951: dominio beta-Grasp) que se utilizan para identificar a las GSs. También se observó que uno de los genes mantiene conservadas las tres secuencias consenso características de GSs (glnA), mientras que los otros dos genes (glnA-2 y glnA-3) contienen parcialmente conservada una de ellas. Con el objetivo de conocer qué funciones desempeñan estas tres proteínas en la asimilación del nitrógeno, y si concretamente glnA-2 y glnA-3 ejercen un papel importante en este proceso, cada una de las tres proteínas halofílicas se clonó y expresó heterólogamente en la cepa BL21 (DE3) de E. coli, utilizando el vector de expresión pET3a, obteniéndose las proteínas en forma de cuerpos de inclusión. Cada una de estas fracciones sólidas se solubilizaron utilizando urea 8 M, y posteriormente se diluyeron en un tampón conteniendo NaCl 2 M y DTT 5 mM para conseguir su renaturalización. Posteriormente, se llevó a cabo la purificación de cada una por separado mediante una única etapa a través de una cromatografía en DEAE-celulosa; obteniéndose puras cada una de las proteínas y concentradas de forma rápida y con un buen rendimiento. La caracterización de la GS (GlnA) recombinante indicó que se trataba de una enzima dependiente de metales catiónicos divalentes, regulada por los efectores 2-oxoglutarato y glutamina. La proteína fue activada por 2-oxoglutarato e inhibida por glutamina. Mediante la técnica de velocidad de sedimentación se determinó que su estructura oligomérica consistía en 12 subunidades y se clasificó como GS tipo I, incluida en la subdivisión α. Se generaron mutantes de deleción de glnA y glnA-3 en Hfx. mediterranei mediante la técnica pop-in pop-out, que permitió la sustitución de una secuencia concreta del genoma por otra modificada in vitro. Para la obtención de los mutantes se utilizó la cepa HM26 (ΔpyrE2) de Hfx. mediterranei. Primeramente, se construyó un cassette de deleción para la obtención de un producto de fusión de 1000 pb (versión incompleta del gen) que se clonó en el vector pMH101N, conteniendo una copia del gen pyrE2, el cual se utilizó como marcador genético. Los mutantes pop-in se seleccionaron en un medio carente de uracilo, ya que sólo las células que codificaron el gen pyrE2, presente en el plásmidos suicida, pudieron sintetizar de novo dicho compuesto y crecer. Posteriormente, el plásmido suicida se perdió y junto con él una de las copias del gen, delecionada u original (mutante pop-out). Finalmente se obtuvieron los mutantes de deleción para los genes glnA y glnA-3, de los cuales glnA resultó ser un gen esencial en la asimilación de amonio y en la síntesis de glutamina, puesto que aquellos mutantes que presentaron la deleción de glnA fueron incapaces de crecer en un medio definido carente de glutamina; se trató por tanto de mutantes auxótrofos para este aminoácido, que únicamente crecieron al adicionar glutamina en el medio de cultivo. Finalmente, para conocer el efecto que produce la fuente de nitrógeno sobre la expresión global de los genes en Hfx. mediterranei, se realizó un array de expresión de la cepa R4 (silvestre) y se determinó la expresión global de genes en tres medios de cultivo con diferentes fuentes de nitrógeno: cultivo con amonio como fuente de nitrógeno en fase estacionaria y exponencial de crecimiento, cultivo con nitrato en mitad de fase exponencial de crecimiento y cultivos con carencia de nitrógeno. Las principales diferencias en expresión de genes se detectaron en los medios de nitrato y carencia de nitrógeno con respecto a amonio, los resultados sugirieron que la ausencia de amonio fue el factor responsable para la expresión de genes implicados en la ruta de asimilación de nitrato. Concretamente, en carencia de nitrógeno la GS mostró una mayor expresión que en medio con amonio. Para analizar los cambios de expresión en los genes glnA-2 y glnA-3 se realizó un nuevo array de expresión de la cepa HM26-A (ΔpyrE2 ΔglnA) utilizando como control la cepa parental HM26 (ΔpyrE2). Se determinó la expresión en dos medios de cultivo, en medio complejo suplementado con glutamina 40 mM en mitad de fase exponencial de crecimiento y en medio con carencia en nitrógeno. Tanto en la cepa HM26-A con carencia en nitrógeno como en la cepa parental HM26 se detectaron cambios de expresión en los genes relacionados con la vía asimilativa del metabolismo del nitrógeno de esta arquea halófila. En la cepa HM26 en carencia de nitrógeno con respecto a medio complejo con gln 40 mM se mostró una menor expresión de los genes glnA-2 y glnA-3 y una sobreexpresión de glnA. Mientras que en la cepa HM26-A en medio complejo con glutamina frente a la cepa HM26 en medio complejo en carencia de nitrógeno, al delecionar glnA, los genes glnA-2 y glnA-3 mostraron un incremento de expresión.que en la cepa HM26-A en medio complejo con glutamina frente a la cepa HM26 en medio complejo en carencia de nitrógeno, al delecionar glnA, los genes glnA-2 y glnA-3 mostraron un incremento de expresión. En conclusión, la glutamina sintetasa de Hfx. mediterranei es una enzima de tipo GSI-α, dodecamérica, resultando ser una proteína esencial en la asimilación de amonio y en la síntesis de glutamina; siendo activa en condiciones de deficiencia de nitrógeno, a diferencia de las isoformas GlnA-2 y GlnA-3 que podrían ejercer un papel regulador de GlnA y posiblemente actúen en la célula en condiciones de abundancia de nitrógeno.
7

Análisis de genes glnA y su relación con el metabolismo del nitrógeno en Haloferax mediterranei

Rodríguez-Herrero, Verónica 06 May 2021 (has links)
Haloferax mediterranei es un microorganismo perteneciente al Dominio Archaea que fue aislado por primera vez en las Salinas de Santa Pola, Alicante. Esta arquea halófila es capaz de crecer con glucosa como única fuente de carbono y con nitrato como única fuente de nitrógeno. En el interior celular, el nitrato se convierte en amonio mediante la nitrato y nitrito reductasas asimilativas. En función de su disponibilidad intracelular el amonio puede asimilarse mediante dos vías: a altas concentraciones de amonio, este se asimila mediante la vía de la glutamato deshidrogenasa (GDH), mientras que a bajas concentraciones de amonio, este se asimila por el ciclo glutamina sintetasa (GS)-glutamato sintasa (GOGAT). La GS (EC 6.3.1.2) es una enzima clave tanto en la asimilación de amonio como en la biosíntesis de glutamina y de otros aminoácidos. Está presente en todos los Dominios de la vida, considerándose como un buen reloj molecular de la evolución ya que su secuencia muestra homología en todos los organismos. La familia de la GS está dividida en tres clases (GSI, GSII y GSIII) dependiendo de su secuencia, el gen que la codifique y del organismo al que corresponda. El genoma de Hfx. mediterranei contiene tres marcos de lectura abiertos que muestran homología con la GS y están codificados por los genes glnA-1, glnA-2 y glnA-3. Los genes glnA-2 y glnA-3 se encuentran localizados muy próximos en el genoma, únicamente separados por 1,6 kb, y a su vez dichos genes están separados del gen glnA-1. La proteína codificada por el gen glnA-1 tiene una identidad del 51,9% y del 49,1% con las proteínas codificadas por los genes glnA-2 y glnA-3, respectivamente. Las proteínas GlnA-2 y GlnA-3 muestran una identidad entre sí de un 60,9%. La proteína GlnA-1 mantiene parcial o completamente conservadas las tres secuencias consenso características de las GS, mientras que las proteínas GlnA-2 y GlnA-3 únicamente mantienen parcialmente conservada una de ellas (putative ATP_binding región signature PS00181). Además, en base a la presencia de los dominios conservados se determinó que las tres proteínas GlnA de Hfx mediterranei presentan el dominio catalítico PF00120 (Gln-synt_C) utilizado para la identificación de las GS tipo l. Analizando los aminoácidos presentes en cada una de las tres proteínas GlnA, se identificó que, de los 18 residuos aminoacídicos característicos de las GSI conservados universalmente, la secuencia de la proteína GlnA-1 presenta todos ellos, además del residuo de adenilación. Sin embargo, 8 de los residuos clave para la biosíntesis de glutamina se encuentran sustituidos por otros en las proteínas GlnA-2 y GlnA-3, careciendo además ambas proteínas del residuo de adenilación. El análisis del transcriptoma en función de la fuente de nitrógeno de la cepa mutante de deleción del gen glnA-1 (HM26-ΔglnA-1) reveló que los genes glnA-2 y glnA-3 no pueden sustituir la función del gen glnA-1. Además, estos últimos genes presentaron un perfil de expresión diferente al de glnA-1 en la cepa parental de Hfx. mediterranei HM26. En condiciones limitantes de nitrógeno, la deleción del gen glnA-1 afectó al nivel de expresión de genes involucrados en diferentes procesos metabólicos perteneciendo en su mayoría al metabolismo del nitrógeno, al metabolismo de las vesículas de gas y los relacionados con los sistemas CRISPR, sistemas de transporte y con reguladores transcripcionales. El estudio de expresión a nivel transcripcional en función de la fuente de nitrógeno de los genes glnA mediante RT-PCR reveló que los genes glnA-1 y glnA-2 se expresan en todas las condiciones analizadas (medio complejo, medio definido con amonio o nitrato 40 mM y en medio definido carente de nitrógeno) mientras que el gen glnA-3 no se expresa en estas condiciones. El estudio de expresión a nivel traduccional en función de la fuente de nitrógeno de las proteínas GlnA mediante Western blotting confirmó que la proteína GlnA1 se expresa en todas las condiciones analizadas (en medio complejo, y en los medios definidos con amonio, nitrato o glutamina 40 mM y en medio definido carente de fuente de nitrógeno) durante todas las etapas de crecimiento analizadas. Del mismo modo, este análisis de expresión reveló que la proteína GlnA-2 se expresa en todas las condiciones analizadas excepto al emplear medio complejo, pudiendo estar implicado algún mecanismo de regulación postranscripcional en la expresión de la proteína GlnA-2 en esta condición. Asimismo, la proteína GlnA-3 no mostró expresión en ninguna de estas condiciones analizadas ni en presencia de otras fuentes de nitrógeno (glutamato) o de carbono (citrato) ensayadas. La proteína recombinante GlnA-1, obtenida mediante expresión heteróloga, mostró una mayor actividad GS que las proteínas GlnA-2 y GlnA-3. Sin embargo, las proteínas recombinantes GlnA-2 y GlnA-3 mostraron valores elevados de actividad y-glutamil putrescina sintetasa mientras que GlnA-1 solo tiene cierta actividad residual cuando se emplea putrescina como sustrato. Los niveles de actividad y-glutamil putrescina sintetasa de las proteínas GlnA-2 y GlnA-3 son unas 10 veces superiores a los valores de actividad GS. En los extractos de Hfx. mediterranei R4 crecidos en presencia de nitrato 40 mM como fuente de nitrógeno, en los cuales se expresan tanto la proteína GlnA-1 como GlnA-2, se observó una actividad GS mayor a la detectada en los extractos obtenidos a partir medio complejo. Por otra parte, Hfx. mediterranei R4 fue capaz de crecer con putrescina como única fuente de nitrógeno a diferentes concentraciones (20 - 250 mM), aunque las densidades ópticas alcanzadas fueron menores que las observadas al emplear otras fuentes de nitrógeno. En extractos proteicos obtenidos a partir de cultivos de Hfx. mediterranei empleando nitrato 40 mM o putrescina a diferentes concentraciones la actividad y-glutamil putrescina sintetasa fue mucho mayor a la detectada al emplear medio complejo como fuente de nitrógeno, condición donde la expresión de la proteína GlnA-2 no fue detectada. Para completar el análisis de las proteínas GlnA-2 y GlnA-3 se generaron mutantes de deleción de los genes glnA-2 y glnA-3 a partir de la cepa parental de Hfx. mediterranei HM26 (ΔpyrE2) mediante la técnica pop-in/pop-out. Los mutantes obtenidos del gen glnA-2 resultaron ser mutantes homocigotos mientras que los mutantes del gen glnA-3 resultaron ser heterocigotos. La cepa mutante HM26-ΔglnA-2 se caracterizó fisiológicamente en diferentes medios de cultivos: medio complejo y medio definido con amonio, nitrato o glutamina como fuentes de nitrógeno. El análisis estadístico de los parámetros de crecimiento reveló que existían diferencias de crecimiento significativas entre la cepa parental HM26 y la cepa mutante HM26-ΔglnA-2 al emplear altas concentraciones de amonio y/o nitrato. El análisis de expresión a nivel traduccional de la cepa mutante HM26-ΔglnA-2 confirmó que la deleción del gen glnA-2 no afectó a la expresión de la proteína GlnA-1 ni a la ausencia de expresión de GlnA-3. Sin embargo, la deleción del gen glnA-2 afectó de forma significativa a la actividad y-glutamil putrescina sintetasa al emplear nitrato 40 mM como fuente de nitrógeno, confirmando la función del gen glnA-2 como una y-glutamil putrescina sintetasa más que una glutamina sintetasa.
8

Estudios moleculares del metabolismo del nitrato en Haloferax mediterranei

Lledó Bosch, Belén 23 September 2005 (has links)
No description available.
9

Process development for the robust production of polyhydroxyalkanoates

Ferré, Anna January 2018 (has links)
Polyhydroxyalkanoates (PHA) are a family of biodegradable polyesters naturally synthesised by some bacteria and archaea. PHA have high industrial value as bioplastics for packaging and biomedical applications. However, their broader use is hindered by high production costs and uncontrolled variation of polymer properties. The extreme halophile Haloferax mediterranei shows bioprocess advantages that can be exploited for the low cost production of the PHA copolymer Poly(3-hydroxbutyrate-co-3-hydroxyvalterate) (PHBV). The focus of this thesis is to identify process variables responsible for the uncontrolled variation of PHA properties in order to progress towards the robust production of PHBV using H. mediterranei. The outcome of the investigation is a novel cultivation strategy for the reliable synthesis of PHBV copolymers with controlled composition and microstructure showing minor differences in material characteristics. Initially, growth kinetics and PHBV synthesis were characterised under nitrogen-excess and nitrogen-limiting conditions in ammonium and for the first time, nitrate. The nitrogen source and concentration influenced PHBV accumulation and variations in polymer composition were observed with ammonium, highlighting the importance of the control of cultivation conditions. Volatile fatty acids (VFA) were found to be a more direct approach to determine PHBV composition and for the first time were used as substrates in H. mediterranei cultures. When the cells were grown in C4:0/C5:0 mixtures, the 3HV fraction in the PHBV was proportional to the percentage of C5:0 in the feed mixture, allowing the synthesis of copolymers with a predefined composition ranging from pure PHB to pure PHV. The cultivation strategy proved effective for the synthesis of HV rich PHBV, which is not easily obtained due to the 3HV precursor toxicity. The polymer microstructure was controlled using different feeding strategies: co-feeding generated random copolymers, while sequential feeding created block and blend copolymers. The synthesis of block copolymers is of interest because the materials show enhanced yield strength and mechanical strength, making such materials more suitable for commodity uses. Bespoke random, block, and blend copolymers with 0−100 mol% 3HV were synthesized and their thermal and mechanical properties studied. Lastly, high temperature cultivation and several surfactants were tested to enhance the production of bespoke PHBV from VFA. PHBV productivity and accumulation was greatly improved in a fed-batch bioreactor fermentation at 37°C with Tween-80 and the maximum PHBV content 58.9% was obtained. The polymers from shake-flasks and from bioreactors showed minor variations in their material properties, demonstrating the scalability and the robustness of the process developed. Further understanding of the different process variables affecting polymer synthesis and composition was gained in this thesis. It is now possible to produce PHBV with controllable composition, microstructure and minor differences in material characteristics. The novel and robust production strategy developed address the bioprocess challenge of minimising the uncontrolled variation of polymer characteristics that is currently hindering the wider use of PHA hence allowing the production of high quality polymers for commodity goods, packaging and biomedical applications.

Page generated in 0.0672 seconds