31 |
"Implementação numérica do método Level Set para propagação de curvas e superfícies" / "Implementation of Level Set Method for computing curves and surfaces motion"Lia Munhoz Benati Napolitano 12 November 2004 (has links)
Nesta dissertação de Mestrado será apresentada uma poderosa técnica numérica, conhecida como método Level Set, capaz de simular e analisar movimentos de curvas em diferentes cenários físicos. Tal método - formulado por Osher e Sethian [1] - está sedimentado na seguinte idéia: representar uma determinada curva (ou superfície) Γ como a curva de nível zero (zero level set) de uma função Φ de maior dimensão (denominada função Level Set). A equação diferencial do tipo Hamilton-Jacobi que descreve a evolução da função Level Set é discretizada através da utilização de acurados esquemas hiperbólicos e, como resultado de tal acurácia, obtém-se uma formulação numérica capaz de tratar eficazmente mudanças topológicas e/ou descontinuidades que, eventualmente, podem surgir no decorrer da propagação da curva (ou superfície) de nível zero. Em virtude da eficácia e versatilidade do método Level Set, esta técnica numérica está sendo amplamente aplicada à diversas áreas científicas, incluindo mecânica dos fluidos, processamento de imagens e visão computacional, crescimento de cristais, geometria computacional e ciência dos materiais. Particularmente, o propósito deste trabalho equivale ao estudo dos fundamentos do método Level Set e, por fim, visa-se aplicar tal modelo numérico à problemas existentes na área de crescimento de cristais. [1] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys., 79:12, 1988. / In this dissertation, we present a powerful numerical technique known as Level Set Method for computing and analyzing moving fronts in different physical settings. The method -formulated by Osher and Sethian [1] - is based on the following idea: a curve (or surface) is embedded as the zero level set of a higher-dimensional function Φ (called level set function). Then, we can link the evolution of this function Φ to the propagation of the curve itself through a time-dependent initial value problem. At any time, the curve is given by the zero level set of the time-dependent level set function Φ. The evolution of the level set function Φ is described by a Hamilton-Jacobi type partial differential equation, which can be discretised by the use of accurate methods for hyperbolic equations. As a result, the Level Set Method is able to track complex curves that can develop large spikes, sharp corners or change its topology as they evolve. Because of its versatility and efficacy, this numerical technique has found applications in a large number of areas, including fluid mechanics, image processing and computer vision, crystal growth, computational geometry and materials science. Particularly, the aim of this dissertation has been to understand the fundamentals of Level Set Method and its final goal is compute the motion of bondaries in crystal growth using this numerical model. [1] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys., 79:12, 1988.
|
32 |
"Implementação numérica do método Level Set para propagação de curvas e superfícies" / "Implementation of Level Set Method for computing curves and surfaces motion"Napolitano, Lia Munhoz Benati 12 November 2004 (has links)
Nesta dissertação de Mestrado será apresentada uma poderosa técnica numérica, conhecida como método Level Set, capaz de simular e analisar movimentos de curvas em diferentes cenários físicos. Tal método - formulado por Osher e Sethian [1] - está sedimentado na seguinte idéia: representar uma determinada curva (ou superfície) Γ como a curva de nível zero (zero level set) de uma função Φ de maior dimensão (denominada função Level Set). A equação diferencial do tipo Hamilton-Jacobi que descreve a evolução da função Level Set é discretizada através da utilização de acurados esquemas hiperbólicos e, como resultado de tal acurácia, obtém-se uma formulação numérica capaz de tratar eficazmente mudanças topológicas e/ou descontinuidades que, eventualmente, podem surgir no decorrer da propagação da curva (ou superfície) de nível zero. Em virtude da eficácia e versatilidade do método Level Set, esta técnica numérica está sendo amplamente aplicada à diversas áreas científicas, incluindo mecânica dos fluidos, processamento de imagens e visão computacional, crescimento de cristais, geometria computacional e ciência dos materiais. Particularmente, o propósito deste trabalho equivale ao estudo dos fundamentos do método Level Set e, por fim, visa-se aplicar tal modelo numérico à problemas existentes na área de crescimento de cristais. [1] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys., 79:12, 1988. / In this dissertation, we present a powerful numerical technique known as Level Set Method for computing and analyzing moving fronts in different physical settings. The method -formulated by Osher and Sethian [1] - is based on the following idea: a curve (or surface) is embedded as the zero level set of a higher-dimensional function Φ (called level set function). Then, we can link the evolution of this function Φ to the propagation of the curve itself through a time-dependent initial value problem. At any time, the curve is given by the zero level set of the time-dependent level set function Φ. The evolution of the level set function Φ is described by a Hamilton-Jacobi type partial differential equation, which can be discretised by the use of accurate methods for hyperbolic equations. As a result, the Level Set Method is able to track complex curves that can develop large spikes, sharp corners or change its topology as they evolve. Because of its versatility and efficacy, this numerical technique has found applications in a large number of areas, including fluid mechanics, image processing and computer vision, crystal growth, computational geometry and materials science. Particularly, the aim of this dissertation has been to understand the fundamentals of Level Set Method and its final goal is compute the motion of bondaries in crystal growth using this numerical model. [1] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys., 79:12, 1988.
|
33 |
Um ensaio em teoria dos jogos / An essay on game theoryPimentel, Edgard Almeida 16 August 2010 (has links)
Esta dissertação aborda a teoria dos jogos diferenciais em sua estreita relação com a teoria das equações de Hamilton-Jacobi (HJ). Inicialmente, uma revisão da noção de solução em teoria dos jogos é empreendida. Discutem-se nesta ocasião as idéias de equilíbrio de Nash e alguns de seus refinamentos. Em seguida, tem lugar uma introdução à teoria dos jogos diferenciais, onde noções de solução como a função de valor de Isaacs e de Friedman são discutidas. É nesta altura do trabalho que fica evidente a conexão entre este conceito de solução e a teoria das equações de Hamilton-Jacobi. Por ocasião desta conexão, é explorada a noção de solução clássica e é exposta uma demonstração do fato de que se um jogo diferencial possuir uma função de valor pelo menos continuamente diferenciável, esta será uma solução da equação de Hamilton-Jacobi associada ao jogo. Este resultado faz uso do princípio da programação dinâmica, devido a Bellman, e cuja demonstração está presente no texto. No entanto, quando a função de valor do jogo é apenas contínua, então embora esta não seja uma solução clássica da equação HJ associada a jogo, vemos que ela será uma solução viscosa, ou solução no sentido da viscosidade - e a esta altura são discutidos os elementos e propriedades desta classe de soluções, um teorema de existência e unicidade e alguns exemplos. Por fim, retomamos o estudo dos jogos diferenciais à luz das soluções viscosas da equação de Hamilton-Jacobi e, assim, expomos uma demonstração de existência da função de valor e do princípio da programação dinâmica a partir das noções da viscosidade / This dissertation aims to address the topic of Differential Game Theory in its connection with the Hamilton-Jacobi (HJ) equations framework. Firstly we introduce the idea of solution for a game, through the discussion of Nash equilibria and its refinements. Secondly, the solution concept is then translated to the context of Differential Games and the idea of value function is introduced in its Isaacs\'s as well as Friedman\'s version. As the value function is discussed, its relationship with the Hamilton-Jacobi equations theory becomes self-evident. Due to such relation, we investigate the HJ equation from two distinct points of view. First of all, we discuss a statement according to which if a differential game has a continuously differentiable value function, then such function is a classical solution of the HJ equation associated to the game. This result strongly relies on Bellman\'s Dynamic Programming Principle - and this is the reason why we devote an entire chapter to this theme. Furthermore, HJ is still at our sight from the PDE point of view. Our motivation is simple: under some lack of regularity - a value function which is continuous, but not continuously differentiable - a game may still have a value function represented as a solution of the associated HJ equation. In this case such a solution will be called a solution in the viscosity sense. We then discuss the properties of viscosity solutions as well as provide an existence and uniqueness theorem. Finally we turn our attention back to the theory of games and - through the notion of viscosity - establish the existence and uniqueness of value functions for a differential game within viscosity solution theory.
|
34 |
Méthodes multigrilles pour les jeux stochastiques à deux joueurs et somme nulle, en horizon infiniDetournay, Sylvie 25 September 2012 (has links) (PDF)
Dans cette thèse, nous proposons des algorithmes et présentons des résultats numériques pour la résolution de jeux répétés stochastiques, à deux joueurs et somme nulle dont l'espace d'état est de grande taille. En particulier, nous considérons la classe de jeux en information complète et en horizon infini. Dans cette classe, nous distinguons d'une part le cas des jeux avec gain actualisé et d'autre part le cas des jeux avec gain moyen. Nos algorithmes, implémentés en C, sont principalement basés sur des algorithmes de type itérations sur les politiques et des méthodes multigrilles. Ces algorithmes sont appliqués soit à des équations de la programmation dynamique provenant de problèmes de jeux à deux joueurs à espace d'états fini, soit à des discrétisations d'équations de type Isaacs associées à des jeux stochastiques différentiels. Dans la première partie de cette thèse, nous proposons un algorithme qui combine l'algorithme des itérations sur les politiques pour les jeux avec gain actualisé à des méthodes de multigrilles algébriques utilisées pour la résolution des systèmes linéaires. Nous présentons des résultats numériques pour des équations d'Isaacs et des inéquations variationnelles. Nous présentons également un algorithme d'itérations sur les politiques avec raffinement de grilles dans le style de la méthode FMG. Des exemples sur des inéquations variationnelles montrent que cet algorithme améliore de façon non négligeable le temps de résolution de ces inéquations. Pour le cas des jeux avec gain moyen, nous proposons un algorithme d'itération sur les politiques pour les jeux à deux joueurs avec espaces d'états et d'actions finis, dans le cas général multichaine (c'est-à-dire sans hypothèse d'irréductibilité sur les chaînes de Markov associées aux stratégies des deux joueurs). Cet algorithme utilise une idée développée dans Cochet-Terrasson et Gaubert (2006). Cet algorithme est basé sur la notion de projecteur spectral non-linéaire d'opérateurs de la programmation dynamique de jeux à un joueur (lequel est monotone et convexe). Nous montrons que la suite des valeurs et valeurs relatives satisfont une propriété de monotonie lexicographique qui implique que l'algorithme termine en temps fini. Nous présentons des résultats numériques pour des jeux discrets provenant d'une variante des jeux de Richman et sur des problèmes de jeux de poursuite. Finalement, nous présentons de nouveaux algorithmes de multigrilles algébriques pour la résolution de systèmes linéaires singuliers particuliers. Ceux-ci apparaissent, par exemple, dans l'algorithme d'itérations sur les politiques pour les jeux stochastiques à deux joueurs et somme nulle avec gain moyen, décrit ci-dessus. Nous introduisons également une nouvelle méthode pour la recherche de mesures invariantes de chaînes de Markov irréductibles basée sur une approche de contrôle stochastique. Nous présentons un algorithme qui combine les itérations sur les politiques d'Howard et des itérations de multigrilles algébriques pour les systèmes linéaires singuliers.
|
35 |
Propagation de fronts structurés en biologie - Modélisation et analyse mathématique / Propagation of structured fronts in biology - Modelling and Mathematical analysisBouin, Emeric 02 December 2014 (has links)
Cette thèse est consacrée à l'étude de phénomènes de propagation dans des modèles d’EDP venant de la biologie. On étudie des équations cinétiques inspirées par le déplacement de colonies de bactéries ainsi que des équations de réaction-diffusion importantes en écologie afin de reproduire plusieurs phénomènes de dynamique et d'évolution des populations. La première partie étudie des phénomènes de propagation pour des équations cinétiques. Nous étudions l'existence et la stabilité d'ondes progressives pour des modèles ou la dispersion est donnée par un opérateur hyperbolique et non par une diffusion. Cela fait entrer en jeu un ensemble de vitesses admissibles, et selon cet ensemble, divers résultats sont obtenus. Dans le cas d'un ensemble de vitesses borné, nous construisons des fronts qui se propagent à une vitesse déterminée par une relation de dispersion. Dans le cas d'un ensemble de vitesses non borné, on prouve un phénomène de propagation accélérée dont on précise la loi d'échelle. On adapte ensuite à des équations cinétiques une méthode basée sur les équations de Hamilton-Jacobi pour décrire des phénomènes de propagation. On montre alors comment déterminer un Hamiltonien effectif à partir de l'équation cinétique initiale, et prouvons des théorèmes de convergence.La seconde partie concerne l'étude de modèles de populations structurées en espace et en phénotype. Ces modèles sont importants pour comprendre l'interaction entre invasion et évolution. On y construit d'abord des ondes progressives que l'on étudie qualitativement pour montrer l'impact de la variabilité phénotypique sur la vitesse et la distribution des phénotypes à l'avant du front. On met aussi en place le formalisme Hamilton-Jacobi pour l'étude de la propagation dans ces équations de réaction-diffusion non locales.Deux annexes complètent le travail, l'une étant un travail en cours sur la dispersion cinétique en domaine non-borné, l'autre étant plus numérique et illustre l’introduction. / This thesis is devoted to the study of propagation phenomena in PDE models arising from biology. We study kinetic equations coming from the modeling of the movement of colonies of bacteria, but also reaction-diffusion equations which are of great interest in ecology to reproduce several features of dynamics and evolution of populations. The first part studies propagation phenomena for kinetic equations. We study existence and stability of travelling wave solutions for models where the dispersal part is given by an hyperbolic operator rather than by a diffusion. A set of admissible velocities comes into the game and we obtain various types of results depending on this set. In the case of a bounded set of velocities, we construct travelling fronts that propagate according to a speed given by a dispersion relation. When the velocity set is unbounded, we prove an accelerating propagation phenomena, for which we give the spreading rate. Then, we adapt to kinetic equations the Hamilton-Jacobi approach to front propagation. We show how to derive an effective Hamiltonian from the original kinetic equation, and prove some convergence results.The second part is devoted to studying models for populations structured by space and phenotypical trait. These models are important to understand interactions between invasion and evolution. We first construct travelling waves that we study qualitatively to show the influence of the genetical variability on the speed and the distribution of phenotypes at the edge of the front. We also perform the Hamilton-Jacobi approach for these non-local reaction-diffusion equations.Two appendices complete this work, one deals with the study of kinetic dispersal in unbounded domains, the other one being numerical aspects of competition models.
|
36 |
Um ensaio em teoria dos jogos / An essay on game theoryEdgard Almeida Pimentel 16 August 2010 (has links)
Esta dissertação aborda a teoria dos jogos diferenciais em sua estreita relação com a teoria das equações de Hamilton-Jacobi (HJ). Inicialmente, uma revisão da noção de solução em teoria dos jogos é empreendida. Discutem-se nesta ocasião as idéias de equilíbrio de Nash e alguns de seus refinamentos. Em seguida, tem lugar uma introdução à teoria dos jogos diferenciais, onde noções de solução como a função de valor de Isaacs e de Friedman são discutidas. É nesta altura do trabalho que fica evidente a conexão entre este conceito de solução e a teoria das equações de Hamilton-Jacobi. Por ocasião desta conexão, é explorada a noção de solução clássica e é exposta uma demonstração do fato de que se um jogo diferencial possuir uma função de valor pelo menos continuamente diferenciável, esta será uma solução da equação de Hamilton-Jacobi associada ao jogo. Este resultado faz uso do princípio da programação dinâmica, devido a Bellman, e cuja demonstração está presente no texto. No entanto, quando a função de valor do jogo é apenas contínua, então embora esta não seja uma solução clássica da equação HJ associada a jogo, vemos que ela será uma solução viscosa, ou solução no sentido da viscosidade - e a esta altura são discutidos os elementos e propriedades desta classe de soluções, um teorema de existência e unicidade e alguns exemplos. Por fim, retomamos o estudo dos jogos diferenciais à luz das soluções viscosas da equação de Hamilton-Jacobi e, assim, expomos uma demonstração de existência da função de valor e do princípio da programação dinâmica a partir das noções da viscosidade / This dissertation aims to address the topic of Differential Game Theory in its connection with the Hamilton-Jacobi (HJ) equations framework. Firstly we introduce the idea of solution for a game, through the discussion of Nash equilibria and its refinements. Secondly, the solution concept is then translated to the context of Differential Games and the idea of value function is introduced in its Isaacs\'s as well as Friedman\'s version. As the value function is discussed, its relationship with the Hamilton-Jacobi equations theory becomes self-evident. Due to such relation, we investigate the HJ equation from two distinct points of view. First of all, we discuss a statement according to which if a differential game has a continuously differentiable value function, then such function is a classical solution of the HJ equation associated to the game. This result strongly relies on Bellman\'s Dynamic Programming Principle - and this is the reason why we devote an entire chapter to this theme. Furthermore, HJ is still at our sight from the PDE point of view. Our motivation is simple: under some lack of regularity - a value function which is continuous, but not continuously differentiable - a game may still have a value function represented as a solution of the associated HJ equation. In this case such a solution will be called a solution in the viscosity sense. We then discuss the properties of viscosity solutions as well as provide an existence and uniqueness theorem. Finally we turn our attention back to the theory of games and - through the notion of viscosity - establish the existence and uniqueness of value functions for a differential game within viscosity solution theory.
|
37 |
Analyse asymptotique d'équations intégro-différentielles : modèles d'évolution et de dynamique des populations / Asymptotic Analysis of Integro-differential Equations : populations dynamics and evolutionary modelsPatout, Florian 27 September 2019 (has links)
Cette thèse est consacrée à l’étude de phénomènes de propagation et de concentration dans des modèles d’équations intégro-différentielles venant de la écologie. On étudie certaines équations de réaction-diffusion non locales apparaissant en dynamique de populations, ainsi que des modèles représentant l’évolution Darwinienne avec un mode de reproduction sexué.Dans une première partie, nous étudions la propagation spatiale pour une équation de réaction-diffusion ou la dispersion opère via un noyau de convolution à queue lourde. Nous mesurons de manière précise l’accélération du front de propagation de la solution. Nous proposons également une échelle adaptée pour mesurer les «petites» mutations. Dans les deux cas nous utilisons le formalisme des équations de Hamilton-Jacobi.Dans un second temps nous étudions un modèle de génétique quantitative, avec un mode de reproduction sexuée. Un petit paramètre mesure la déviation entre le trait des descendants est la moyenne des traits des parents. Dans le régime où ce paramètre est petit nous étudions l’existence de solutions stationnaires, puis le problème de Cauchy lié à ce modèle. Les solutions se concentrent autour des optima de sélection, sous la forme de perturbations de distributions Gaussiennes avec petite variance fixée par le paramètre. Notre analyse généralise le cas linéaire de la reproduction asexuée en utilisant des outils d’analyse perturbative. Enfin dans une dernière partie nous fournissons des simulations numériques et des méthodes mathématiques pour étudier la dynamique interne des équilibres dans le régime de petite variance, pour les deux modes de reproduction : asexué et sexué. / This manuscript tackles propagation and concentration phenomena in different integro-differential equations with a background in ecology. We study non local reaction-diffusion equations from population dynamics, and models for Darwinian evolution with a sexual or asexual mode of reproduction, with a preference for the former.In a first part, we study spatial propagation for a reaction diffusion equation where dispersion acts through a fat tailed kernel. We measure accurately the acceleration of the propagation front of the population. We propose as well a scaling well adapted to “small mutations” when we consider the model in the context of adaptative dynamics. This scaling is very natural following the previous spatial investigation. In both cases we look at the long time behavior and we use the Hamilton-Jacobi framework. Then we turn our attention towards a quantitative genetics model, with a sexual mode of reproduction, imposed by the “infinitesimal operator”. In this non-linear setting, a small parameter tunes the deviation between the phenotypic trait of the offspring and the mean of the traits of the parents. In the regime where this parameter is small, we prove existence of stationary solutions, and their local uniqueness. We also provide an example of non-uniqueness in the case where the selection function admits several extrema. We prove that the solution concentrates around the points of minimum of the selection function. The analysis is carried by the small perturbations of special profiles : Gaussian distributions with small variance fixed by the parameter.We then study the stability of the Cauchy problem associated to the previous model. This time we prove that at all times, for a well prepared initial data, the solutions is arbitrary close to a Gaussian distribution with small variance. The proof follows the framework of the previous : we use perturbative analysis tools, but this time an even more precise description of the correctors is needed and we linearize the equation to obtain it. In a final part we show numerical simulations and different mathematical approaches to study inside dynamics of phenotypic lineages in the regime of small variance, with a moving environement.
|
38 |
Price Discovery In The U.S. Bond Market Trading Strategies And The Cost Of LiquidityShao, Haimei 01 January 2011 (has links)
The world bond market is nearly twice as large as the equity market. The goal of this dissertation is to study the dynamics of bond price. Among the liquidity risk, interest rate risk and default risk, this dissertation will focus on the liquidity risk and trading strategy. Under the mathematical frame of stochastic control, we model price setting in U.S. bond markets where dealers have multiple instruments to smooth inventory imbalances. The difficulty in obtaining the optimal trading strategy is that the optimal strategy and value function depend on each other, and the corresponding HJB equation is nonlinear. To solve this problem, we derived an approximate optimal explicit trading strategy. The result shows that this trading strategy is better than the benchmark central symmetric trading strategy.
|
39 |
Μέθοδος Hamilton-Jacobi για τη ρύθμιση μη γραμμικών διεργασιών με ασταθή δυναμική μηδενιστώνΜουσαβερέ, Δήμητρα 13 March 2009 (has links)
Για την αντιμετώπιση του προβλήματος ρύθμισης ενός συστήματος μη ελάχιστης φάσης είναι γνωστοί δύο τρόποι από τη θεωρία των γραμμικών συστημάτων. Ο ένας αφορά στην επιλογή βέλτιστης συνθετικής εξόδου ως προς την οποία το σύστημα είναι ελάχιστης φάσης. Ο δεύτερος τρόπος περιλαμβάνει άμεση κατασκευή βέλτιστου νόμου ανάδρασης καταστάσεων ως προς ένα σύνθετο δείκτη απόδοσης.
Στην παρούσα εργασία αρχικά αναπτύσσεται μέθοδος για τη σύνθεση βέλτιστου νόμου ανάδρασης καταστάσεων για μη γραμμικές διεργασίες, όπου η είσοδος υπεισέρχεται μη γραμμικά στις διαφορικές εξισώσεις, με βάση ένα σύνθετο τετραγωνικό δείκτη απόδοσης. Ο δείκτης αυτός εξαρτάται τόσο από τη ρυθμιστική απόκλιση, όσο και από την απόκλιση της μεταβλητής χειρισμού. Για την επίλυση του προβλήματος δυναμικής βελτιστοποίησης χρησιμοποιούνται οι εξισώσεις Hamilton – Jacobi μέσω των οποίων υπολογίζεται ο βέλτιστος νόμος ανάδρασης καταστάσεων. Η λύση των εξισώσεων Hamilton – Jacobi υπολογίζεται με βάση την επαναληπτική μέθοδο Newton – Kantorovich. Σε κάθε βήμα της επανάληψης επιλύεται προσεγγιστικά μια μερική διαφορική εξίσωση τύπου Zubov με τη βοήθεια αναπτύγματος σε δυναμοσειρά. Στο Νοστό βήμα της επανάληψης η μέθοδος παράγει τη Νοστής τάξης προσέγγιση του αναπτύγματος κατά Taylor του βέλτιστου νόμου ανάδρασης καταστάσεων. Η παραπάνω μέθοδος εφαρμόζεται σε προβλήμα ρύθμισης της συγκέντρωσης προϊόντος σε σύστημα δύο μη ισοθερμοκρασιακών αντιδραστήρων CSTR, όπου λαμβάνει χώρα εξώθερμη αντίδραση, στην περίπτωση που η είσοδος υπεισέρχεται μη γραμμικά στις δυναμικές εξισώσεις της διεργασίας. Επίσης μελετώνται οι ιδιότητες σύγκλισης της επαναληπτικής μεθόδου Newton – Kantorovich, όταν αυτή εφαρμόζεται για την επίλυση της εξίσωσης Hamilton – Jacobi – Bellman που αντιστοιχεί στο πρόβλημα βελτιστοποίησης ενός σύνθετου τετραγωνικού δείκτη απόδοσης υπό τους περιορισμούς μιας μη γραμμικής δυναμικής όπου η είσοδος υπεισέρχεται γραμμικά στις διαφορικές εξισώσεις.
Στη συνέχεια, για τη βέλτιστη ρύθμιση μη γραμμικών συστημάτων με ασταθή δυναμική μηδενιστών (συστήματα μη ελάχιστης φάσης), χρησιμοποιείται ο συνήθης τετραγωνικός δείκτης απόδοσης ISE. Στην περίπτωση αυτή το πρόβλημα δυναμικής βελτιστοποίησης είναι ιδιόμορφο. Για την επίλυση του προβλήματος αυτού το μη γραμμικό σύστημα μετασχηματίζεται στην κανονική μορφή Byrnes-Isidori, εφαρμόζεται η θεωρία Hamilton – Jacobi και υπολογίζεται στατικά ισοδύναμη συνθετική έξοδος με ευσταθή δυναμική μηδενιστών. Η ρύθμιση της συνθετικής εξόδου στο προκαθορισμένο σημείο επιτυγχάνεται με γραμμικοποίηση εισόδου/εξόδου. Για την επίλυση των σχετικών εξισώσεων Hamilton–Jacobi αναπτύσσεται η επαναληπτική μέθοδος Newton – Kantorovich, η οποία περιλαμβάνει την επίλυση μιας μερικής διαφορικής εξίσωσης τύπου Zubov σε κάθε βήμα της επανάληψης. Η μέθοδος εφαρμόζεται σε πρόβλημα ρύθμισης της συγκέντρωσης του επιθυμητού προϊόντος σε μη ισοθερμοκρασιακό αντιδραστήρα CSTR με κινητική Van de Vusse που παρουσιάζει ασταθή δυναμική μηδενιστών.
Τέλος, οι δύο μέθοδοι συγκρίνονται με βάση τους επιμέρους δείκτες απόδοσης ISE και ISC, των οποίων ο γραμμικός συνδυασμός συνιστά το σύνθετο δείκτη απόδοσης της πρώτης μεθόδου, ενώ τα αποτελέσματά τους συγκρίνονται όταν αυτές εφαρμόζονται σε πρόβλημα ρύθμισης της συγκέντρωσης του επιθυμητού προϊόντος σε μη ισοθερμοκρασιακό αντιδραστήρα CSTR με κινητική Van de Vusse. / For the control of nonlinear nonminimum – phase systems, there are two possible lines of attack, originating from linear systems theory: a) direct calculation of the optimal state feedback with respect to a quadratic performance index that represents a combination of an error measure and a control effort measure (composite index), and b) calculation of the ISE-optimal minimum-phase output and subsequent input/output linearization on that output.
This work develops a numerical algorithm for the calculation of an optimal nonlinear state feedback law for nonlinear systems. A quadratic performance index is used, which contains quadratic error terms and quadratic input penalty terms. The optimization problem is solved using the Hamilton-Jacobi equations, which determine the optimal nonlinear state feedback law. A Newton-Kantorovich iteration is developed for the solution of the pertinent Hamilton-Jacobi equations, which involves solving a Zubov partial differential equation at each step of the iteration, using a power series method. At step N of the iteration, the method generates the (N+1)-th order truncation of the Taylor series expansion of the optimal state feedback function. The method is applied to the problem of controlling a system of two non-isothermal continuous stirred tank reactors (CSTR), where an exothermic reaction takes place. Convergence properties of the algorithm are also developed independently of Kantorovich’s theorem, and the results are illustrated in a numerical example.
For the optimal regulation of nonminimum-phase nonlinear systems, the performance index ISE (Integral of the Square of the Error) is used. The problem of minimizing ISE subject to the dynamics of the system and closed-loop stability is singular. The problem of calculation of an ISE-optimal, statically equivalent, minimum-phase output for nonminimum-phase compensation is formulated using Hamilton-Jacobi theory and the Byrnes-Isidori normal form representation of the nonlinear system. An input/output linearizing state feedback law is applied to regulate the synthetic output to a constant set point. A Newton-Kantorovich iteration is developed for the solution of the pertinent Hamilton-Jacobi equations, which involves solving a Zubov equation at each step of the iteration. The method is applied to the problem of controlling a nonisothermal CSTR with Van de Vusse kinetics, which exhibits nonminimum-phase behaviour.
Finally, the two methods are compared with respect to the constituent indexes ISE and ISC (Integral of the Square of the Control), whose linear combination forms the composite performance index. The numerical results from both methods are compared in the control of a nonisothermal CSTR with Van de Vusse kinetics.
|
40 |
Asymptotic Analysis of Partial Differential Equations Arising in Biological Processes of Anomalous Diffusion / Analyse asymptotique d’équations aux dérivées partielles issues de processus biologiques de diffusion anormaleMateos González, Álvaro 22 September 2017 (has links)
Cette thèse est consacrée à l'analyse asymptotique d'équations aux dérivées partielles issues de modèles de déplacement sous-diffusif en biologie cellulaire. Notre motivation biologique est fondée sur les nombreuses observation récentes de protéinescytoplasmiques dont le déplacement aléatoire dévié de la diffusion Fickienne normale. Dans la première partie, nous étudions la décroissance auto-similaire de la solution d'une équation de renouvellement à queue lourde vers un état stationnaire. Les idéesmises en jeu sont inspirées de méthodes d'entropie relative. Nos principaux apports sont la preuve d'un taux de décroissance en norme L1 vers la loi de l'arc-sinus et l'introduction d'une fonction pivot spécifique dans une méthode d'entropie relative.La seconde partie porte sur la limite hyperbolique d'une équation de renouvellement structurée en âge et à sauts en espace. Nous y prouvons un résultat de « stabilité » : les solutions des problèmes rééchelonnés à ε > 0 convergent lorsque ε --> 0 vers la solution de viscosité de l'équation de Hamilton-Jacobi limite des problèmes à ε > 0. Les outilsmis en jeu proviennent de la théorie des équations de Hamilton-Jacobi.Ce travail présente trois idées intéressantes. La première est celle de prouver le résultat de convergence sur la condition de bord du problème plutôt que d'utiliser des fonctions test perturbées. La deuxième consiste en l'introduction de termes correcteurslogarithmiques en temps dans des estimations a priori ne découlant pas directementdu principe du maximum. Cela est dû à la non-existence d'un équilibre du problèmehomogène en espace. La troisième est une estimation précise de la décroissance de l'influence de la condition initiale sur le terme de renouvellement. Elle correspond à une estimation fine d'une version non-locale de la dérivée temporelle de la solution. Au cours de cette thèse, des simulations numériques de type Monte Carlo, schémas volumes finis, Lax-Friedrichs et Weighted Essentially Non Oscillating ont été réalisées. / This thesis is devoted to the asymptotic analysis of partial differential equations modelling subdiffusive random motion in cell biology. The biological motivation for this work is the numerous recent observations of cytoplasmic proteins whose random motion deviates from normal Fickian diffusion. In the first part, we study the self-similar decay towards a steady state of the solution of a heavy-tailed renewal equation. The ideas therein are inspired from relative entropy methods. Our main contributions are the proof of an L1 decay rate towards the arc-sine distribution and the introduction of a specific pivot function in a relative entropy method.The second part treats the hyperbolic limit of an age-structured space-jump renewal equation. We prove a "stability" result: the solutions of the rescaled problems at ε > 0 converge as ε --> 0 towards the viscosity solution of the limiting Hamilton-Jacobi equation of the ε > 0 problems. The main mathematical tools used come from the theory of Hamilton-Jacobi equations. This work presents three interesting ideas. The first is that of proving the convergence result on the boundary condition of the studied problem rather than using perturbed test functions. The second consists in the introduction of time-logarithmic correction termsin a priori estimates that do not follow directly from the maximum principle. That is due to the non-existence of a suitable equilibrium for the space-homogenous problem. The third is a precise estimate of the decay of the inuence of the initial condition on the renewal term. This is tantamount to a refined estimate of a non-local version of the time derivative of the solution. Throughout this thesis, we have performed numerical simulations of different types: Monte Carlo, finite volume schemes, Lax-Friedrichs schemes and Weighted Essentially Non Oscillating schemes.
|
Page generated in 0.1193 seconds