Spelling suggestions: "subject:"isaacs equations"" "subject:"lsaacs equations""
1 |
Controle H-infinito não linear e a equação de Hamilton Jacobi-Isaacs. / Nonlinear H-infinity control and the Hamilton-Jacobi-Isaacs equation.Ferreira, Henrique Cezar 10 December 2008 (has links)
O objetivo desta tese é investigar aspectos práticos que facilitem a aplicação da teoria de controle H1 não linear em projetos de sistemas de controle. A primeira contribuição deste trabalho é a proposta do uso de funções ponderação com dinâmica no projeto de controladores H1 não lineares. Essas funções são usadas no projeto de controladores H1 lineares para rejeição de perturbações, ruídos, atenuação de erro de rastreamento, dentre outras especificações. O maior obstáculo para aplicação prática da teoria de controle H1 não linear é a dificuldade para resolver simultaneamente as duas equações de Hamilton-Jacobi-Isaacs relacionadas ao problema de realimentação de estados e injeção da saída. Não há métodos sistematicos para resolver essas duas equações diferenciais parciais não lineares, equivalentes µas equações de Riccati da teoria de controle H1 linear. A segunda contribuição desta tese é um método para obter a injeção da saída transformando a equação de Hamilton-Jacobi-Isaacs em uma sequencia de equações diferenciais parciais lineares, que são resolvidas usando o método de Galerkin. Controladores H1 não lineares para um sistema de levitação magnética são obtidos usando o método clássico de expansão em série de Taylor e o método de proposto para comparação. / The purpose of this thesis is to investigate practical aspects to facilitate the ap- plication of nonlinear H1 theory in control systems design. Firstly, it is shown that dynamic weighting functions can be used to improve the performance and robustness of the nonlinear H1 controller such as in the design of H1 controllers for linear plants. The biggest bottleneck to the practical applications of nonlinear H1 control theory has been the di±culty in solving the Hamilton-Jacobi-Isaacs equations associated with the design of a state feedback and an output injection gain. There is no systematic numerical approach for solving this ¯rst order, nonlinear partial di®erential equations, which reduces to Riccati equations in the linear context. In this work, successive ap- proximation and Galerkin approximation methods are combined to derive an algorithm that produces an output injection gain. Design of nonlinear H1 controllers obtained by the well established Taylor approximation and by the proposed Galerkin approxi- mation method applied to a magnetic levitation system are presented for comparison purposes.
|
2 |
Méthodes multigrilles pour les jeux stochastiques à deux joueurs et somme nulle, en horizon infiniDetournay, Sylvie 25 September 2012 (has links) (PDF)
Dans cette thèse, nous proposons des algorithmes et présentons des résultats numériques pour la résolution de jeux répétés stochastiques, à deux joueurs et somme nulle dont l'espace d'état est de grande taille. En particulier, nous considérons la classe de jeux en information complète et en horizon infini. Dans cette classe, nous distinguons d'une part le cas des jeux avec gain actualisé et d'autre part le cas des jeux avec gain moyen. Nos algorithmes, implémentés en C, sont principalement basés sur des algorithmes de type itérations sur les politiques et des méthodes multigrilles. Ces algorithmes sont appliqués soit à des équations de la programmation dynamique provenant de problèmes de jeux à deux joueurs à espace d'états fini, soit à des discrétisations d'équations de type Isaacs associées à des jeux stochastiques différentiels. Dans la première partie de cette thèse, nous proposons un algorithme qui combine l'algorithme des itérations sur les politiques pour les jeux avec gain actualisé à des méthodes de multigrilles algébriques utilisées pour la résolution des systèmes linéaires. Nous présentons des résultats numériques pour des équations d'Isaacs et des inéquations variationnelles. Nous présentons également un algorithme d'itérations sur les politiques avec raffinement de grilles dans le style de la méthode FMG. Des exemples sur des inéquations variationnelles montrent que cet algorithme améliore de façon non négligeable le temps de résolution de ces inéquations. Pour le cas des jeux avec gain moyen, nous proposons un algorithme d'itération sur les politiques pour les jeux à deux joueurs avec espaces d'états et d'actions finis, dans le cas général multichaine (c'est-à-dire sans hypothèse d'irréductibilité sur les chaînes de Markov associées aux stratégies des deux joueurs). Cet algorithme utilise une idée développée dans Cochet-Terrasson et Gaubert (2006). Cet algorithme est basé sur la notion de projecteur spectral non-linéaire d'opérateurs de la programmation dynamique de jeux à un joueur (lequel est monotone et convexe). Nous montrons que la suite des valeurs et valeurs relatives satisfont une propriété de monotonie lexicographique qui implique que l'algorithme termine en temps fini. Nous présentons des résultats numériques pour des jeux discrets provenant d'une variante des jeux de Richman et sur des problèmes de jeux de poursuite. Finalement, nous présentons de nouveaux algorithmes de multigrilles algébriques pour la résolution de systèmes linéaires singuliers particuliers. Ceux-ci apparaissent, par exemple, dans l'algorithme d'itérations sur les politiques pour les jeux stochastiques à deux joueurs et somme nulle avec gain moyen, décrit ci-dessus. Nous introduisons également une nouvelle méthode pour la recherche de mesures invariantes de chaînes de Markov irréductibles basée sur une approche de contrôle stochastique. Nous présentons un algorithme qui combine les itérations sur les politiques d'Howard et des itérations de multigrilles algébriques pour les systèmes linéaires singuliers.
|
3 |
Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs EquationsHan, Dong January 2011 (has links)
We propose multigrid methods for solving Hamilton-Jacobi-Bellman (HJB) and Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations. The methods are based on the full approximation scheme. We propose a damped-relaxation method as smoother for multigrid. In contrast with policy iteration, the relaxation scheme is convergent for both HJB and HJBI equations. We show by local Fourier analysis that the damped-relaxation smoother effectively reduces high frequency error. For problems where the control has jumps, restriction and interpolation methods are devised to capture the jump on the coarse grid as well as during coarse grid correction. We will demonstrate the effectiveness of the proposed multigrid methods for solving HJB and HJBI equations arising from option pricing as well as problems where policy iteration does not converge or converges slowly.
|
4 |
Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs EquationsHan, Dong January 2011 (has links)
We propose multigrid methods for solving Hamilton-Jacobi-Bellman (HJB) and Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations. The methods are based on the full approximation scheme. We propose a damped-relaxation method as smoother for multigrid. In contrast with policy iteration, the relaxation scheme is convergent for both HJB and HJBI equations. We show by local Fourier analysis that the damped-relaxation smoother effectively reduces high frequency error. For problems where the control has jumps, restriction and interpolation methods are devised to capture the jump on the coarse grid as well as during coarse grid correction. We will demonstrate the effectiveness of the proposed multigrid methods for solving HJB and HJBI equations arising from option pricing as well as problems where policy iteration does not converge or converges slowly.
|
5 |
Controle H-infinito não linear e a equação de Hamilton Jacobi-Isaacs. / Nonlinear H-infinity control and the Hamilton-Jacobi-Isaacs equation.Henrique Cezar Ferreira 10 December 2008 (has links)
O objetivo desta tese é investigar aspectos práticos que facilitem a aplicação da teoria de controle H1 não linear em projetos de sistemas de controle. A primeira contribuição deste trabalho é a proposta do uso de funções ponderação com dinâmica no projeto de controladores H1 não lineares. Essas funções são usadas no projeto de controladores H1 lineares para rejeição de perturbações, ruídos, atenuação de erro de rastreamento, dentre outras especificações. O maior obstáculo para aplicação prática da teoria de controle H1 não linear é a dificuldade para resolver simultaneamente as duas equações de Hamilton-Jacobi-Isaacs relacionadas ao problema de realimentação de estados e injeção da saída. Não há métodos sistematicos para resolver essas duas equações diferenciais parciais não lineares, equivalentes µas equações de Riccati da teoria de controle H1 linear. A segunda contribuição desta tese é um método para obter a injeção da saída transformando a equação de Hamilton-Jacobi-Isaacs em uma sequencia de equações diferenciais parciais lineares, que são resolvidas usando o método de Galerkin. Controladores H1 não lineares para um sistema de levitação magnética são obtidos usando o método clássico de expansão em série de Taylor e o método de proposto para comparação. / The purpose of this thesis is to investigate practical aspects to facilitate the ap- plication of nonlinear H1 theory in control systems design. Firstly, it is shown that dynamic weighting functions can be used to improve the performance and robustness of the nonlinear H1 controller such as in the design of H1 controllers for linear plants. The biggest bottleneck to the practical applications of nonlinear H1 control theory has been the di±culty in solving the Hamilton-Jacobi-Isaacs equations associated with the design of a state feedback and an output injection gain. There is no systematic numerical approach for solving this ¯rst order, nonlinear partial di®erential equations, which reduces to Riccati equations in the linear context. In this work, successive ap- proximation and Galerkin approximation methods are combined to derive an algorithm that produces an output injection gain. Design of nonlinear H1 controllers obtained by the well established Taylor approximation and by the proposed Galerkin approxi- mation method applied to a magnetic levitation system are presented for comparison purposes.
|
6 |
Safe Controller Design for Intelligent Transportation System Applications using Reachability AnalysisPark, Jaeyong 17 October 2013 (has links)
No description available.
|
Page generated in 0.0851 seconds