• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of word segmentation algorithms applied on handwritten text

Isaac, Andreas January 2020 (has links)
The aim of this thesis is to build and evaluate how a word segmentation algorithm performs when extracting words from historical handwritten documents. Since historical documents often consist of background noise, the aim will also be to investigate whether applying a background removal algorithm will affect the final result or not. Three different types of historical handwritten documents are used to be able to compare the output when applying two different word segmentation algorithms. The result attained indicates that the background removal algorithm increases the accuracy obtained when using the word segmentation algorithm. The word segmentation algorithm developed successfully manages to extract a majority of the words while the obtained algorithm has difficulties for some documents. A conclusion made was that the type of document plays the key role in whether a poor result will be obtained or not. Hence, different algorithms may be needed rather than using one for all types of documents.
2

Word based off-line handwritten Arabic classification and recognition : design of automatic recognition system for large vocabulary offline handwritten Arabic words using machine learning approaches

AlKhateeb, Jawad Hasan Yasin January 2010 (has links)
The design of a machine which reads unconstrained words still remains an unsolved problem. For example, automatic interpretation of handwritten documents by a computer is still under research. Most systems attempt to segment words into letters and read words one character at a time. However, segmenting handwritten words is very difficult. So to avoid this words are treated as a whole. This research investigates a number of features computed from whole words for the recognition of handwritten words in particular. Arabic text classification and recognition is a complicated process compared to Latin and Chinese text recognition systems. This is due to the nature cursiveness of Arabic text. The work presented in this thesis is proposed for word based recognition of handwritten Arabic scripts. This work is divided into three main stages to provide a recognition system. The first stage is the pre-processing, which applies efficient pre-processing methods which are essential for automatic recognition of handwritten documents. In this stage, techniques for detecting baseline and segmenting words in handwritten Arabic text are presented. Then connected components are extracted, and distances between different components are analyzed. The statistical distribution of these distances is then obtained to determine an optimal threshold for word segmentation. The second stage is feature extraction. This stage makes use of the normalized images to extract features that are essential in recognizing the images. Various method of feature extraction are implemented and examined. The third and final stage is the classification. Various classifiers are used for classification such as K nearest neighbour classifier (k-NN), neural network classifier (NN), Hidden Markov models (HMMs), and the Dynamic Bayesian Network (DBN). To test this concept, the particular pattern recognition problem studied is the classification of 32492 words using ii the IFN/ENIT database. The results were promising and very encouraging in terms of improved baseline detection and word segmentation for further recognition. Moreover, several feature subsets were examined and a best recognition performance of 81.5% is achieved.
3

Content Detection in Handwritten Documents

January 2018 (has links)
abstract: Handwritten documents have gained popularity in various domains including education and business. A key task in analyzing a complex document is to distinguish between various content types such as text, math, graphics, tables and so on. For example, one such aspect could be a region on the document with a mathematical expression; in this case, the label would be math. This differentiation facilitates the performance of specific recognition tasks depending on the content type. We hypothesize that the recognition accuracy of the subsequent tasks such as textual, math, and shape recognition will increase, further leading to a better analysis of the document. Content detection on handwritten documents assigns a particular class to a homogeneous portion of the document. To complete this task, a set of handwritten solutions was digitally collected from middle school students located in two different geographical regions in 2017 and 2018. This research discusses the methods to collect, pre-process and detect content type in the collected handwritten documents. A total of 4049 documents were extracted in the form of image, and json format; and were labelled using an object labelling software with tags being text, math, diagram, cross out, table, graph, tick mark, arrow, and doodle. The labelled images were fed to the Tensorflow’s object detection API to learn a neural network model. We show our results from two neural networks models, Faster Region-based Convolutional Neural Network (Faster R-CNN) and Single Shot detection model (SSD). / Dissertation/Thesis / Masters Thesis Computer Science 2018
4

Word based off-line handwritten Arabic classification and recognition. Design of automatic recognition system for large vocabulary offline handwritten Arabic words using machine learning approaches.

AlKhateeb, Jawad H.Y. January 2010 (has links)
The design of a machine which reads unconstrained words still remains an unsolved problem. For example, automatic interpretation of handwritten documents by a computer is still under research. Most systems attempt to segment words into letters and read words one character at a time. However, segmenting handwritten words is very difficult. So to avoid this words are treated as a whole. This research investigates a number of features computed from whole words for the recognition of handwritten words in particular. Arabic text classification and recognition is a complicated process compared to Latin and Chinese text recognition systems. This is due to the nature cursiveness of Arabic text. The work presented in this thesis is proposed for word based recognition of handwritten Arabic scripts. This work is divided into three main stages to provide a recognition system. The first stage is the pre-processing, which applies efficient pre-processing methods which are essential for automatic recognition of handwritten documents. In this stage, techniques for detecting baseline and segmenting words in handwritten Arabic text are presented. Then connected components are extracted, and distances between different components are analyzed. The statistical distribution of these distances is then obtained to determine an optimal threshold for word segmentation. The second stage is feature extraction. This stage makes use of the normalized images to extract features that are essential in recognizing the images. Various method of feature extraction are implemented and examined. The third and final stage is the classification. Various classifiers are used for classification such as K nearest neighbour classifier (k-NN), neural network classifier (NN), Hidden Markov models (HMMs), and the Dynamic Bayesian Network (DBN). To test this concept, the particular pattern recognition problem studied is the classification of 32492 words using ii the IFN/ENIT database. The results were promising and very encouraging in terms of improved baseline detection and word segmentation for further recognition. Moreover, several feature subsets were examined and a best recognition performance of 81.5% is achieved.

Page generated in 0.4844 seconds