• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Convergence of Planar Domains and of Harmonic Measure Distribution Functions

Barton, Ariel 01 December 2003 (has links)
Consider a region Ω in the plane and a point z0 in Ω. If a particle which travels randomly, by Brownian motion, is released from z0, then it will eventually cross the boundary of Ω somewhere. We define the harmonic measure distribution function, or h-function hΩ, in the following way. For each r > 0, let hΩ(r) be the probability that the point on the boundary where the particle first exits the region is at a distance at most r from z0. We would like to know, given a function f, whether there is some region Ω such that f is the h-function of that region. We investigate this question using convergence properties of domains and of h-functions. We show that any well behaved sequence of regions must have a convergent subsequence. This, together with previous results, implies that any function f that can be written as the limit of the h-functions hΩn of a sufficiently well behaved sequence{Ωn}ofregionsis the h-function of some region. We also make some progress towards finding sequences {Ωn} of regions whose h-functions converge to some predetermined function f, and which are sufficiently well behaved for our results to apply. Thus, we make some progress towards showing that certain functions f are in fact the h- function of some region.
2

On the Dimension of a Certain Measure Arising from a Quasilinear Elliptic Partial Differential Equation

Akman, Murat 01 January 2014 (has links)
We study the Hausdorff dimension of a certain Borel measure associated to a positive weak solution of a certain quasilinear elliptic partial differential equation in a simply connected domain in the plane. We also assume that the solution vanishes on the boundary of the domain. Then it is shown that the Hausdorff dimension of this measure is less than one, equal to one, greater than one depending on the homogeneity of the certain function. This work generalizes the work of Makarov when the partial differential equation is the usual Laplace's equation and the work of Lewis and his coauthors when it is the p-Laplace's equation.
3

Topics in Potential Theory: Quadrature Domains, Balayage and Harmonic Measure.

Sjödin, Tomas January 2005 (has links)
<p>In this thesis, which consists of five papers (A,B,C,D,E), we are interested in questions related to quadrature domains. Among the problems studied are the possibility of changing the type of measure in a quadrature identity (from complex to real and from real signed to positive), properties of partial balayage, which in a sense can be used to generate quadrature domains, and mother bodies which are closely related to inversion of partial balayage.</p><p>These three questions are discussed in papers A,D respectively B.</p><p>The first of these questions (when trying to go from real signed to positive measures) leads to the study of approximation in the cone of positive harmonic functions. These questions are closely related to properties of the harmonic measure on the Martin boundary, and this relationship leads to the study of harmonic measures on ideal boundaries in paper E. Some other approaches to the same problem also lead to some extent to the study of properties of classical balayage in paper C.</p>
4

Topics in Potential Theory: Quadrature Domains, Balayage and Harmonic Measure.

Sjödin, Tomas January 2005 (has links)
In this thesis, which consists of five papers (A,B,C,D,E), we are interested in questions related to quadrature domains. Among the problems studied are the possibility of changing the type of measure in a quadrature identity (from complex to real and from real signed to positive), properties of partial balayage, which in a sense can be used to generate quadrature domains, and mother bodies which are closely related to inversion of partial balayage. These three questions are discussed in papers A,D respectively B. The first of these questions (when trying to go from real signed to positive measures) leads to the study of approximation in the cone of positive harmonic functions. These questions are closely related to properties of the harmonic measure on the Martin boundary, and this relationship leads to the study of harmonic measures on ideal boundaries in paper E. Some other approaches to the same problem also lead to some extent to the study of properties of classical balayage in paper C. / QC 20101007
5

POTENTIAL THEORY AND HARMONIC FUNCTIONS

Alhwaitiy, Hebah Sulaiman 01 December 2015 (has links)
No description available.
6

Marche aléatoire indexée par un arbre et marche aléatoire sur un arbre / Tree-indexed random walk and random walk on trees

Lin, Shen 08 December 2014 (has links)
L’objet de cette thèse est d’étudier plusieurs modèles probabilistes reliant les marches aléatoires et les arbres aléatoires issus de processus de branchement critiques.Dans la première partie, nous nous intéressons au modèle de marche aléatoire à valeurs dans un réseau euclidien et indexée par un arbre de Galton–Watson critique conditionné par la taille. Sous certaines hypothèses sur la loi de reproduction critique et la loi de saut centrée, nous obtenons, dans toutes les dimensions, la vitesse de croissance asymptotique du nombre de points visités par cette marche, lorsque la taille de l’arbre tend vers l’infini. Ces résultats nous permettent aussi de décrire le comportement asymptotique du nombre de points visités par une marche aléatoire branchante, quand la taille de la population initiale tend vers l’infini. Nous traitons également en parallèle certains cas où la marche aléatoire possède une dérive constante non nulle.Dans la deuxième partie, nous nous concentrons sur les propriétés fractales de la mesure harmonique des grands arbres de Galton–Watson critiques. On comprend par mesure harmonique la distribution de sortie, hors d’une boule centrée à la racine de l’arbre, d’une marche aléatoire simple sur cet arbre. Lorsque la loi de reproduction critique appartient au domaine d’attraction d’une loi stable, nous prouvons que la masse de la mesure harmonique est asymptotiquement concentrée sur une partie de la frontière, cette partie ayant une taille négligeable par rapport à celle de la frontière. En supposant que la loi de reproduction critique a une variance finie, nous arrivons à évaluer la masse de la mesure harmonique portée par un sommet de la frontière choisi uniformément au hasard. / The aim of this Ph. D. thesis is to study several probabilistic models linking the random walks and the random trees arising from critical branching processes.In the first part, we consider the model of random walk taking values in a Euclidean lattice and indexed by a critical Galton–Watson tree conditioned by the total progeny. Under some assumptions on the critical offspring distribution and the centered jump distribution, we obtain, in all dimensions, the asymptotic growth rate of the range of this random walk, when the size of the tree tends to infinity. These results also allow us to describe the asymptotic behavior of the range of a branching random walk, when the size of the initial population goes to infinity. In parallel, we treat likewise some cases where the random walk has a non-zero constant drift.In the second part, we focus on the fractal properties of the harmonic measure on large critical Galton–Watson trees. By harmonic measure, we mean the exit distribution from a ball centered at the root of the tree by simple random walk on this tree. If the critical offspring distribution is in the domain of attraction of a stable distribution, we prove that the mass of the harmonic measure is asymptotically concentrated on a boundary subset of negligible size with respect to that of the boundary. Assuming that the critical offspring distribution has a finite variance, we are able to calculate the mass of the harmonic measure carried by a random vertex uniformly chosen from the boundary.

Page generated in 0.424 seconds