• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 26
  • 25
  • 14
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • Tagged with
  • 263
  • 263
  • 46
  • 37
  • 29
  • 27
  • 27
  • 25
  • 24
  • 23
  • 23
  • 22
  • 21
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Advanced modulation techniques for power converters

Mehrizi-Sani, Ali 14 September 2007 (has links)
Pulse-width modulation methods are widely used for the synthesis of ac voltages at the terminals of a voltage-sourced converter (VSC). Traditionally sinusoidal pulsewidth modulation (SPWM) has been used. A powerful alternative for this purpose is space-vector modulation (SVM), in which the converter is placed in a finite number of states in order to best approximate the reference voltage. This method offers better utilization of the dc bus voltage and provides several degrees of freedom for enhancement of the harmonic spectrum as well as switching losses. This thesis studies the SVM method for two- and three-level VSCs. A model for implementation of SVM in the electromagnetic transients simulation program PSCAD/EMTDC is developed. The model is able to generate firing pulses in linear as well as overmodulation range and is used to study the performance of different SVM strategies in terms of their harmonic spectra and associated converter and harmonic losses. The model is also used to demonstrate the suitability of the method for network applications. The thesis also employs genetic algorithms to find an optimized SVM sequence for improved harmonic performance. An objective function is defined that seeks to minimize the most significant harmonic components of the generated waveform, while keeping the other harmonic components within the acceptable range outlined in the available standards. The obtained sequence shows great improvement over the conventionally-used SVM sequence.
112

Harmonic Models of Common Converter Topologies for Accurate Harmonic Analysis of Distribution Systems

Gray, Philippe 22 November 2013 (has links)
Harmonic distortion in a power system can excite non-characteristic harmonics from converter interfaced loads and generators which can then propagate back into the system, exciting other harmonics in the system. In this thesis, a harmonic analysis tool is presented that is designed to perform high accuracy, computationally efficient, steady-state harmonic analysis of distribution systems when multiple converter interfaced loads and generators exist in the system. The harmonic analysis tool requires less detail and engineering time than PSCAD/EMTDC while offering reliable assessment of harmonic coupling problems that are not captured by existing frequency-domain harmonic analysis tools. To do this, 5 harmonic models of common power electronic converter topologies were developed and implemented into this tool. The harmonic models are shown to be highly accurate; when tested in an unbalanced system with even and odd harmonic distortion, the harmonic models showed a maximum error of less than 0.4% when compared to PSCAD/EMTDC.
113

Harmonic Models of Common Converter Topologies for Accurate Harmonic Analysis of Distribution Systems

Gray, Philippe 22 November 2013 (has links)
Harmonic distortion in a power system can excite non-characteristic harmonics from converter interfaced loads and generators which can then propagate back into the system, exciting other harmonics in the system. In this thesis, a harmonic analysis tool is presented that is designed to perform high accuracy, computationally efficient, steady-state harmonic analysis of distribution systems when multiple converter interfaced loads and generators exist in the system. The harmonic analysis tool requires less detail and engineering time than PSCAD/EMTDC while offering reliable assessment of harmonic coupling problems that are not captured by existing frequency-domain harmonic analysis tools. To do this, 5 harmonic models of common power electronic converter topologies were developed and implemented into this tool. The harmonic models are shown to be highly accurate; when tested in an unbalanced system with even and odd harmonic distortion, the harmonic models showed a maximum error of less than 0.4% when compared to PSCAD/EMTDC.
114

Advanced modulation techniques for power converters

Mehrizi-Sani, Ali 14 September 2007 (has links)
Pulse-width modulation methods are widely used for the synthesis of ac voltages at the terminals of a voltage-sourced converter (VSC). Traditionally sinusoidal pulsewidth modulation (SPWM) has been used. A powerful alternative for this purpose is space-vector modulation (SVM), in which the converter is placed in a finite number of states in order to best approximate the reference voltage. This method offers better utilization of the dc bus voltage and provides several degrees of freedom for enhancement of the harmonic spectrum as well as switching losses. This thesis studies the SVM method for two- and three-level VSCs. A model for implementation of SVM in the electromagnetic transients simulation program PSCAD/EMTDC is developed. The model is able to generate firing pulses in linear as well as overmodulation range and is used to study the performance of different SVM strategies in terms of their harmonic spectra and associated converter and harmonic losses. The model is also used to demonstrate the suitability of the method for network applications. The thesis also employs genetic algorithms to find an optimized SVM sequence for improved harmonic performance. An objective function is defined that seeks to minimize the most significant harmonic components of the generated waveform, while keeping the other harmonic components within the acceptable range outlined in the available standards. The obtained sequence shows great improvement over the conventionally-used SVM sequence.
115

System and method for determining harmonic contributions from nonlinear loads in power systems

Mazumdar, Joy 13 November 2006 (has links)
The objective of this research is to introduce a neural network based solution for the problem of measuring the actual amount of harmonic current injected into a power network by an individual nonlinear load. Harmonic currents from nonlinear loads propagate through the system and cause harmonic pollution. As a result, voltage at the point of common coupling (PCC) is rarely sinusoidal. The IEEE 519 harmonic standard provides customer and utility harmonic limits and many utilities are now requiring their customers to comply with IEEE 519. Measurements of the customer’s current at the PCC are expected to determine the customer’s compliance with IEEE 519. However, results in this research show that the current measurements at the PCC are not always reliable in that determination. In such a case, it may be necessary to determine what the customer’s true current harmonic distortions would be if the PCC voltage could be a pure sinusoidal voltage. However, establishing a pure sinusoidal voltage at the PCC may not be feasible since that would mean performing utility switching to reduce the system impedance. An alternative approach is to use a neural network that is able to learn the customer’s load admittance. Then, it is possible to predict the customer’s true current harmonic distortions based on mathematically applying a pure sinusoidal voltage to the learned load admittance. The proposed method is called load modeling. Load modeling predicts the true harmonic current that can be attributed to a customer regardless of whether a resonant condition exists on the utility power system. If a corrective action is taken by the customer, another important parameter of interest is the change in the voltage distortion level at the PCC due to the corrective action of the customer. This issue is also addressed by using the dual of the load modeling method. Topologies of the neural networks used in this research include multilayer perceptron neural networks and recurrent neural networks. The theory and implementation of a new neural network topology known as an Echo State Networks is also introduced. The proposed methods are verified on a number of different power electronic test circuits as well as field data. The main advantages of the proposed methods are that only waveforms of voltages and currents are required for their operation and they are applicable to both single and three phase systems. The proposed methods can be integrated into any existing power quality instrument or can be fabricated into a commercial standalone instrument that could be installed in substations of large customer loads, or used as a hand-held clip on instrument.
116

Modelling hydrodynamic processes within Pumicestone Passage, Northern Moreton Bay, Queensland

Larsen, Genevieve Ruth January 2007 (has links)
Estuaries can be considered as vital natural resources and are unique ecosystems at the interface between terrestrial and marine environments. The increase of population density centred on these coastal features and associated anthropogenic activities such as trade, industry, agriculture and recreation can adversely affect these sensitive environments. The Pumicestone Passage, located in northern Moreton Bay, Australia, is one such estuarine environment where there are concerns about degradation of water quality resulting from rapid land use change. These changes are both immediate to the Passage and within its wider catchment. Of notable concern are the outbreaks of Lyngbya (a toxic blue-green algae) in the Passage itself and near its interface with Deception Bay to the south. Other factors of concern are increased suspended and dissolved loads, and maintenance of ecosystem integrity. In this study, numerical modelling, graphical methods and water surface elevation and current velocity parameter calculations are used to describe hydrological processes in the Pumicestone Passage. A hydrodynamic model is developed using the modelling software SMS and RMA2 as a foundation for future hydrodynamic and water quality modelling. In addition, observed data are used to interpret general hydrodynamic behaviour in the passage, and determine various parameters for use in model development and calibration. Tidal prediction is also discussed and used for model calibration. To support the modelling and for preliminary interpretation of hydrodynamic processes within the Passage, measurements were made in the field of (a) water surface elevation variation at 17 sites; (b) tidal current velocities in four of the tributary creeks and at the northern boundary; (c) volumetric flow rates at two cross-sections within the Passage; and (d) cross-sectional bathymetry at sites where tidal current velocities were measured in the creeks. In general, examination of the observational data reveals a number of important processes in the Pumicestone Passage. Almost all sites within Pumicestone Passage and its tributaries are flood dominant indicating that tidal storage and bottom friction effects are significant. Mesotidal ranges occur at sites close to the southern boundary of the passage, however, bottom friction greatly reduces the tidal response at the remaining sites which results in microtidal ranges. The influence of both the southern and northern tides can be seen in the deformation of tidal waveforms in the central passage. Extensive intertidal areas at and inside the northern inlet to the Passage markedly reduce tidal ranges in the northern estuary and its tributary creeks. Issues involved in hydrodynamic model development and performance are discussed. Overall, model results for the southern estuary have satisfactory correlation with observed data whereas model results for the northern estuary are less satisfactory. In addition, water surface elevation variation model results are generally more accurate than tidal current velocity model results. Reasons for the differences between model and observed values are considered and possible solutions given. Factors discussed relate to boundary condition locations, resolution of bathymetric and geographical data, mesh development methods and parameter assignment.
117

Buildings and Hecke Algebras

Parkinson, James William January 2005 (has links)
We establish a strong connection between buildings and Hecke algebras through the study of two algebras of averaging operators on buildings. To each locally finite regular building we associate a natural algebra B of chamber set averaging operators, and when the building is affine we also define an algebra A of vertex set averaging operators. In the affine case, it is shown how the building gives rise to a combinatorial and geometric description of the Macdonald spherical functions, and of the centers of affine Hecke algebras. The algebra homomorphisms from A into the complex numbers are studied, and some associated spherical harmonic analysis is conducted. This generalises known results concerning spherical functions on groups of p-adic type. As an application of this spherical harmonic analysis we prove a local limit theorem for radial random walks on affine buildings.
118

Measurement and prediction of nonlinear harmonics as a tool for dynamic characterization of electrochemical systems /

Wilson, Jamie Robyn, January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (p. 134-140).
119

Spectral-based tests for periodicities

Wei, Lai, January 2008 (has links)
Thesis (Ph. D.)--Ohio State University, 2008. / Title from first page of PDF file. Includes bibliographical references (p. 151-153).
120

Harmonic simulation of traction system /

Lai, Tsz-ming, Terence. January 2000 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2000. / Includes bibliographical references.

Page generated in 0.2527 seconds