Spelling suggestions: "subject:"harmonic analysis."" "subject:"armonic analysis.""
121 |
Invariant representations of GSp(2)Chan, Ping-Shun, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Includes bibliographical references (p. 253-255).
|
122 |
Nonlinear harmonic analysis.January 1968 (has links)
Bibliography: p. 143-147. / Issued also as a Ph.D. thesis in the Dept. of Electrical Engineering, 1968. / M.I.T. DSR Project no. 76265 NASA Research Grant NGR-22-009-124
|
123 |
Transformational approaches to romantic harmony and the late works of César Franck /Cook, Robert Cameron. January 2001 (has links)
Thesis (Ph. D.)--University of Chicago, Department of Music, March 2001. / Includes bibliographical references. Also available on the Internet.
|
124 |
Etude de la régularité des solutions faibles d’énergie infinie d’une équation de transport non locale / Study of weak infinite energy solutions for a non local transport equationLazar, Omar 21 February 2013 (has links)
L'objet de cette thèse est l'étude de la régularité des solutions d'énergie infinie d'une équation de transport non locale. Plus précisément, nous nous sommes intéressés à deux équations de transport dont la vitesse est donnée par un opérateur non local. La première équation est l'équation dissipative surface quasi-géostrophique (SQG) et la seconde est un modèle 1D qui peut être vu comme la version 1D de l'équation quasi-géostrophique non écrite sous forme divergence. Une autre motivation du modèle 1D est le lien qu'a cette équation avec l'équation de Birkoff-Rott modélisant l'évolution d'une poche de tourbillon. Ces deux équations ont été introduites par Constantin, Majda et Tabak pour (SQG) et par Constantin, Lax, Majda pour le modèle 1D dans le but de mieux comprendre l'étude de la régularité des solutions de l'équation d'Euler tridimensionnelle écrite en terme de la vorticité. Dans une première partie, nous nous sommes attachés à étudier l'équation quasi géostrophique (SQG) lorsque la donnée initiale est dans l'espace de Morrey-Campanato non homogène $L^{2}_{uloc}(mathbb{R}^2)$. Le manque de décroissance à l'infini du noyau de convolution de l'opérateur de Riesz ne permet pas de considérer le cas d'une donnée intiale $L^{2}_{uloc}(mathbb{R}^2)$. Cependant, en donnant plus de décroissance au noyau de l'opérateur de Riesz, ou de façon équivalente, en donnant plus d'oscillations à la donnée initiale nous rendons possible l'étude de l'équation dans des espaces de Morrey-Camapanato. Nous montrons alors un théorème d'existence globale dans le cas d'oscillations suffisamment grandes et local dans le cas de petites oscillations. Dans une seconde partie, nous nous sommes intéressés à l'étude de l'équation de transport 1D dont la vitesse est non locale. Contrairement à l'équation (SQG), l'approche Morrey-Campanato pour l'équation 1D ne marche pas aussi bien. Le caractère non locale de cette équation associé au fait qu'elle ne soit pas écrite sous forme divergence introduit de grandes difficultés. Cependant, l'étude dans les espaces à poids est possible et nous obtenons un résultat d'existence globale à condition de prendre un poids appartenant à la classe A_2 de Muckenhoupt. Enfin, nous terminons en montrant que la condition de positivité de la donnée initiale n'est pas nécessaire si l'on désire uniquement avoir un contrôle globale de solutions faibles dont l'énergie ne décroit pas. Comme cela a été remarqué dans l'article de Cordoba, Cordoba et Fontelos, la décroissance de l'énergie n'est valable que sous l'hypothèse de positivité de la donnée initiale. Ceci rejoint un résultat établi récemment par Hongjie Dong / In this thesis, we adress the study of weak infinite energy solutions for the critical dissipative quasi geostrophic (SQG) equation. We also study a 1D transport equation with non local velocity. More precisely, we consider the (SQG) equation equation with data in Morrey-Camapanto type spaces and the other equation in a weighted Lebesgue spaces. Both spaces generate infinite energy solutions. Regarding the 1D equation with non local velocity, the existence of weak Morrey solutions is not easy to obtain, this is due to the fact that the non linearity is not written in a divergence form. Nevertheless, we are able to adress the study this 1D equation in a weigted Lebesgue space and this also provides infinite energy solutions. In a first part, we show that for any initial data lying in a Morrey-Campanato space for large enough oscillations, we have global existence of weak solutions. The proof is based on the study of the truncated equation (on a ball of radius $R>0$ centered at the origin) associated with a truncated et regularized initial data (by making a convolution with a standard mollifer). We obtain emph{a priori} estimates that give rise to an energy inequality. Then, we treat the case of small oscillations, namely $0<s<1/4$. More precisely, we show that for all initial data lying in $Lambda^{s} (dot H^{s}_{uloc} (mathbb{R}^{2}))cap L^infty(mathbb{R}^{2})$ we have local existence of solutions.In a second part, we study a 1D model equation driven by a non local velocity. This equation have been considered by Cordoba, Cordoba and Fontelos in a paper where the authors show that for all positive initial data in $H^{2} (mathbb{R}^{2})$ we have global existence of weak solutions. We first make some remarks regarding the positivity condition of the initial data by showing that this condition is not necessary for keeping the global control but we actually lost the $L^2$ maximum principle and the $L^{2}$ decay at inifinity. In the second part of the chapter, we show a global existence result of weak solutions for all positive initial data belonging to the weighted Lebesgue spaces $L^{2}(w)$ where $w$ is a weight of the $mathcal{A}_{2}$ class of Muckenhoupt. The method we used may easily be extend to other active scalar equations such as the surface quasi geostrophic equation
|
125 |
Estimativas de Strichartz e a equação não linear de Schrödinger em espaços euclidianos. / Strichartz's estimate and the Schrödinger's nonlinear equation in euclidian spaces.Santos, Alex Santana dos 04 February 2009 (has links)
In this work we will study local and global well-posedness to Schrödinger nonlinear equation, with initial data L2(RN), that is
iut(t,x) + Δu(t,x) = γ│u(t,x)│α u(t, x)
u(x,0) = φ(x) L2(RN), x RN, t R.
where u is a complex value function and 0 < α <4/ N . / Fundação de Amparo a Pesquisa do Estado de Alagoas / Neste trabalho estudaremos a boa colocação local e global para equação não linear de Schrödinger, com dados iniciais em L2(RN), a saber
iut(t,x) + Δu(t,x) = γ│u(t,x)│α u(t, x)
u(x,0) = φ(x) L2(RN), x RN, t R.
onde u é uma função de valores complexos e α < 4/N.
|
126 |
The Boundedness of the Hardy-Littlewood Maximal Function and the Strong Maximal Function on the Space BMOZhang, Wenhao 01 January 2018 (has links)
In this thesis, we present the space BMO, the one-parameter Hardy-Littlewood maximal function, and the two-parameter strong maximal function. We use the John-Nirenberg inequality, the relation between Muckenhoupt weights and BMO, and the Coifman-Rochberg proposition on constructing A1 weights with the Hardy- Littlewood maximal function to show the boundedness of the Hardy-Littlewood maximal function on BMO. The analogous statement for the strong maximal function is not yet understood. We begin our exploration of this problem by discussing an equivalence between the boundedness of the strong maximal function on rectangular BMO and the fact that the strong maximal function maps A∞ weights into the A1 class. We then extend a multiparameter counterexample to the Coifman-Rochberg proposition proposed by Soria (1987) and discuss the difficulties in modifying it into an A∞ counterexample that would disapprove the boundedness of the strong maximal function.
|
127 |
Analise harmonica na esfera unitaria d-dimensional real / Harmonic analysis on the unit d-dimensional real sphereOliveira, Fernanda Moura de 29 August 2005 (has links)
Orientadores: Sergio Antonio Tozoni, Alexander Kushpel / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-04T21:23:04Z (GMT). No. of bitstreams: 1
Oliveira_FernandaMourade_M.pdf: 1054228 bytes, checksum: 75fe14a8c8e718328bbee826a80d14ae (MD5)
Previous issue date: 2005 / Resumo: O objetivo da dissertação e desenvolver um texto em português sobre Análise Harmônica na esfera d-dimensional real e aplicar os resultados deste texto no estudo de um teorema de multiplicadores. Nos dois primeiros capítulos e realizado um estudo sobre funções harmônicas em um domínio do espaço euclidiano Rd+1, harmônicos esféricos, representações de SO(d+1), harmônicos zonais, polinômios ultraesféricos e sobre o operador de Laplace Beltrami para a esfera. Finalmente, no terceiro capítulo é estudado um teorema de multiplicadores recente, o qual fornece condições suficientes para que um operador multiplicador seja limitado de Lp(Sd) em Lq(Sd), para quaisquer p e q, 1=p, q=8. Como aplicação deste teorema são obtidas estimativas superiores para n-larguras de Kolmogorov de classes de Sobolev nos espaços Lq(Sd), 1=p, q= 8, g > 0 / Abstract: The purpose of this work is to develop a text in Portuguese about Harmonic Analysis on the d-dimensional real sphere Sd and to apply the results of the text to study a multiplier theorem. In the first two chapters it is made a study about harmonic functions in a domain of the euclidian space Rd+1, spherics harmonics, representations of SO(d+1), zonal harmonics, ultraspherics polynomials and about the Laplace Beltrami operator on the sphere. Finally, in the third chapter it is studied a recent multiplier theorem which gives sufficient conditions for a multiplier operator be bounded from Lp(Sd) to Lq(Sd), for 1=p, q=8. As application of this theorem are obtained upper bounds for n-widths of Kolmogorov type of Sobolev classes in the spaces Lq(Sd), 1=p, q= 8, g > 0 / Mestrado / Matematica / Mestre em Matemática
|
128 |
Metodos de interpolação real e espaços de Sobolev e Besov sobre a esfera Sd / Real interpolation methods and Sobolev and Besov espaces on the Sd sphereOliveira, Andrielber da Silva 28 April 2006 (has links)
Orientador: Sergio Antonio Tozoni / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-06T13:07:08Z (GMT). No. of bitstreams: 1
Oliveira_AndrielberdaSilva_M.pdf: 1284065 bytes, checksum: 0117263cf98921db674e49f5f57d460d (MD5)
Previous issue date: 2006 / Resumo: O objetivo da dissertação é realizar um estudo dos espaços de Besov sobre a esfera unitária d-dimensional real Sd. No primeiro capítulo são estudados espaços de interpolação utilizando dois métodos de interpolação real. Em particular são estudados os Teoremas de Equivalência e de Reiteração para os J-método e K-método. No segundo capítulo é realizado um estudo rápido sobre análise harmônica na esfera Sd, incluindo um estudo sobre harmônicos esféricos, harmônicos zonais, somas de Cesàro e sobre
um teorema de multiplicadores. O terceiro e último capítulo é o mais importante e nele são aplicados os resultados dos capítulos anteriores. São introduzidos os espaços de Besov, decompondo uma função suave definida sobre a esfera d-dimensional, em uma série de harmônicos esféricos e usando uma seqüência de polinômios zonais que podem ser vistos como uma generalização natural dos
polinômios de Vallée Poussin definidos sobre o círculo unitário. O principal resultado estudado diz que todo espaço de Besov pode ser obtido como espaço de interpolação de dois espaços de Sobolev / Abstract: The purpose of this work is to make a study about Besov¿s spaces on the unit d-dimensional real sphere Sd. In the first chapter are studied spaces of interpolation using two real interpolation methods. In particular, are studied The Equivalence Theorem and The Reiteration Theorem for the J-method and the K-method. In the second chapter it is made a short study about harmonic analysis on the sphere Sd, including a study about spherics harmonics, zonal harmonics, Cesàro sums and about a multiplier theorem.
The third and last chapter is the most important of this work. In this chapter are applied the results of the others chapters. Are introduced the Besov spaces, decomposing a smooth function defined on the d-dimensional sphere, in a series of harmonics spherics and using a sequence o zonal polynomials which can be seen as a natural generalization of the Vallée Poussin polynomials defined on the unit circle. The main result studied says that every Besov¿s space can be got as a interpolation space of two Sobolev¿s spaces / Mestrado / Mestre em Matemática
|
129 |
Numeros de entropia de conjuntos de funções suaves sobre a esfera 'S POT. d' / Entropy numbers of sets of smooth functions on the sphere 'S POT. d'Oliveira, Juliana Gaiba 13 August 2018 (has links)
Orientadores: Alexander Kushpel, Sergio Antonio Tozoni / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T06:56:29Z (GMT). No. of bitstreams: 1
Oliveira_JulianaGaiba_M.pdf: 1850799 bytes, checksum: dbbe2a623b208272b38d1973911e2cb3 (MD5)
Previous issue date: 2009 / Resumo: A teoria de entropia foi introduzida por Kolmogorov por volta de 1930. Desde então, muitos trabalhos tem visado obter estimativas para números de entropia de certas classes de conjuntos. O principal objetivo deste trabalho é estudar dois teoremas onde são estabelecidas estimativas superiores e inferiores para números de entropia de operadores multiplicadores genéricos. Para demonstrar estes teoremas utilizamos resultados sobre estimativas para medias de Levy, para uma classe de normas especiais. Outro objetivo é estudar aplicações dos teoremas citados na obtenção de estimativas para números de entropia de conjuntos de funções suaves finitamente e infinitamente diferenciáveis sobre a esfera unitária d-dimensional, associados a operadores multiplicadores específicos. Várias dessas estimativas são assintoticamente exatas em termos de ordem e as constantes que determinam a ordem dessas estimativas s~ao determinadas explicitamente / Abstract: The entropy theory was introduced by Kolmogorov around 1930. Since then, many works aims to find estimates for entropy numbers of certain classes of sets. The main objective of this work is to study two theorems that establishes upper and lower estimates for entropy numbers of generic multiplier operators. To prove these theorems, we utilize some results on Levy means estimates for a special class of norms. Another objective is to study applications of above theorems in obtaining estimates for entropy numbers of sets of finitely and infinitely smooth functions on the d-dimensional sphere, associated with generic multiplier operatores. Some of these estimates are asymptotically sharp in terms of order and the constants that determines the order of these estimates are explicit determined / Mestrado / Mestre em Matemática
|
130 |
Aplicações harmonicas e martingales em variedades / Harmonic mappings and martingales in manifoldsSilva, Fabiano Borges da 18 February 2005 (has links)
Orientador: Paulo Regis Caron Ruffino / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-04T03:35:11Z (GMT). No. of bitstreams: 1
Silva_FabianoBorgesda_M.pdf: 388532 bytes, checksum: 847fc3b7dce8c11700ac92aff1ce3c34 (MD5)
Previous issue date: 2005 / Resumo: Este trabalho tem por finalidade explorar resultados de aplicacoes harmonicas, atraves do calculo estocastico em variedades. Esta organizado da seguinte forma: Nos dois primeiros capitulos sao introduzidos conceitos e resultados sobre calculo estocastico no Rn, geometria
diferencial e grupos de Lie. No terceiro capitulo temos as definicoes de aplicacoes harmonicas e a equacao de Euler-Lagrange. E finalmente, no ultimo, damos uma caracterizacao para aplicacoes harmonicas atraves de martingales, que sera importante para explorar alguns resultados sobre aplicacoes harmonicas do ponto de vista do calculo estocastico em variedades / Abstract: In this work we explore results of harmonic mappings, via stochastic calculus in manifolds. The text is organized as follows: In the first two chapters, we introduce concepts and results about stochastic calculus in Rn, differential geometry and Lie groups. In the third chapter we have the definitions of harmonic mappings and the Euler-Lagrange equation. Finally, in the last chapter, we give a characterization of harmonic mappings via martingales, this will be important to explore some results about harmonic mappings from the point of view of stochastic calculus in manifolds / Mestrado / Matematica / Mestre em Matemática
|
Page generated in 0.3454 seconds