• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ammonia removal from a landfill leachate by biological nitrification and denitrification

Dedhar, Saleem January 1985 (has links)
The discharge of a landfill leachate to a receiving water body can cause a serious pollution problem. One component of leachate that can have a severe impact on a receiving water body is ammonia and its oxidized form, nitrate. This study investigated the biological treatibility of a high ammonia leachate, with specific regard to nitriification and denitrification. A continuous-feed, single sludge denitrification system with recycle was used. Leachate ammonia concentrations of up to 288 mg/L-N were reduced to less than 1 mg/L. The ammonia was removed by nitrification and bacterial uptake. About 25% of the incoming ammonia was taken up by the bacteria in the anoxic reactor; the rest was subsequently nitrified in the aerobic reactor. The nitrates produced in the aerobic reactor were recycled back to the anoxic reactor to undergo denitrification. Glucose was added directly to the anoxic reactor to aid denitrification. The degree of denitrification was dependent on the glucose loading to the anoxic reactor; however, 100% denitrification was achieved on several occasions. The influent leachate COD removal was 20%; however after the addition of glucose to the system, a mean COD removal of 74% was obtained. Of the COD removed across the system, 85% was used in the anoxic reactor for denitrification, and the remaining 15% was used by the heterotrophs in the aerobic reactor. The four metals monitored regularly, zinc, manganese, nickel and iron were removed by the biomass, but not to the same extent During the latter part of the study, the system was first spiked with manganese, and then - zinc, to try and induce an inhibitory effect on the nitrification process. The manganese had no detectable effect on the system. However, total zinc (>95% soluble) levels of between 14.9 and 17.6 mg/L caused substantial inhibition of the nitrification process, resulting in approximately 70 mg/L ammonia in the effluent (feed = 216 mg/L). This inhibition was also evident from the lower percent nitrification values and the unit nitrification rates. This high influent zinc concentration also caused deflocculation, resulting in the loss of significant quantities of biomass with the effluent. The high zinc concentrations also inhibited the denitrifiers, resulting in a decrease in the ammonia uptake, as well as an increase in the COD (used)/Nitrate+Nitrite (NOT) (reduced) ratios in the anoxic reactor. The zinc levels were then lowered to allow the system to return to normal; after this state had been reached, the influent total zinc (>95% soluble) levels were again increased up to 19.5 mg/L. This concentration of zinc did not result in any ammonia appearing in the effluent; thus, it is possible that the bacteria had acclimatized to these high influent zinc concentrations. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
2

Radionuclide transport as vapor through unsaturated fractured rock

Green, Ronald T. January 1986 (has links)
The objective of this study is to identify and examine potential mechanisms of radionuclide transport as vapor at a high-level radioactive waste repository located in unsaturated fractured rock. Transport mechanisms and processes have been investigated near the repository and at larger distances. Transport mechanisms potentially important at larger distances include ordinary diffusion, viscous flow and free convection. Ordinary diffusion includes self and binary diffusion, Knudsen flow and surface diffusion. Pressure flow and slip flow comprise viscous flow. Free convective flow results from a gas density contrast. Transport mechanisms or processes dominant near the repository include ordinary diffusion, viscous flow plus several mechanisms whose driving forces arise from the non-isothermal, radioactive nature of high-level waste. The additional mechanisms include forced diffusion, aerosol transport, thermal diffusion and thermophoresis. Near a repository vapor transport mechanisms and processes can provide a significant means of transport from a failed canister to the geologic medium from which other processes can transport radionuclides to the accessible environment. These issues are believed to be important factors that must be addressed in the assessment of specfic engineering designs and site selection of any proposed HLW repository.
3

Fluid flow and solute transport through three-dimensional networks of variably saturated discrete fractures

Rasmussen, T. C. January 1988 (has links)
Methodologies for estimating hydraulic and solute transport properties of unsaturated, fractured rock are developed. The methodologies are applied to networks of discrete fractures for the purpose of estimating steady fluid flow rates and breakthrough curves of entrained solutes. The formulations employ the boundary integral method to discretize the outer rim of each fracture and to solve a two dimensional flow equation within fracture planes. A three dimensional variant of the two dimensional boundary integral method is used to calculate flow through a permeable matrix with embedded permeable fractures. Exterior and interior surfaces are discretized using boundary elements to account for flow between fractures and the matrix, and between the matrix and fractures and the exterior boundaries. Synthetic fracture networks are created using planar fractures of finite areal extent embedded within a three dimensional rock matrix for the purpose of performing sensitivity studies of network hydraulic conductivity with respect to geometric parameters, such as fracture orientation and density. Results of the sensitivity studies show that: (1) The global hydraulic conductivity is linearly dependent on the product of fracture transmissivity and density for fractures of which fully penetrate the rock volume; (2) The effect of correlation between fracture length and transmissivity is to increase the global hydraulic conductivity; and (3) Results using a three dimensional coupled fracture— matrix flow regime compare favorably with analytic results. Flow through variably saturated fracture networks is modeled by assuming a constant capillary head within individual fractures. A free surface is found using an iterative procedure which locates nodal points at the intersection of constant total head and pressure head contours. The simulated free surface compares favorably with an approximate analytic solution and with laboratory results. Simulations indicate the presence of zones of water under both positive and negative pressure, as well as regions of air—filled voids. Travel times and breakthrough curves are determined by integrating the inverse velocity over a streamline, and then summing over all streamlines. For the fracture network examined, travel times decrease with decreasing fracture saturation. The effects of retardation and matrix diffusion are also examined.
4

A three-dimensional analysis of flow and solute transport resulting from deep well injection into faulted stratigraphic units

Wallace, Michael Gary, 1958- January 1989 (has links)
An analysis was performed of a Texas gulf coast hazardous waste injection well disposal system. The system was complicated by the presence of a fault which transected the injection interval. The existence of the fault presented the potential for enhanced vertical migration of the injected solutes via a tortuous path of interconnected, highly permeable sand units. Evaluation of this potential necessitated a fully three dimensional model which incorporated the arrangement of the alternating shales and sands and their associated discontinuities. Computer run time and memory limitations compelled a dissection of the problem into components, as well as the utilization of a specific mixture of conservative and realistic assumptions. The analysis indicated that within 10,000 years, the waste would advance vertically no further than one hundred feet into the overlying stratigraphy, and laterally no further than 24,000 feet from the point of injection.
5

Characterization And Lime Stabilization Studies On Artificially Lead Contaminated Soils

Gaurave, Kumar 07 1900 (has links) (PDF)
Hazardous waste substances are solid, semi-solid or non-aqueous liquids that exhibit characteristics of corrosivity, reactivity, ignitability, toxicity and infectious property. Major available options for management of hazardous waste include direct disposal into landfill or chemical treatment/stabilization of wastes prior to landfill disposal. Hazardous wastes are accepted for direct disposal in engineered landfills if they conform to the chemical concentration limit criterion (determined by water leach test followed by estimation of the concentration of the contaminant) and compressive strength (the material should have compressive strength > 50 kPa) criterion. Lead is classified as extremely toxic metal. Elevated levels of lead in water (surface and ground water) primarily arise from industrial discharges, and aerial deposition. During its residence in surface water bodies, the lead may interact detrimentally with aquatic life or be abstracted into public water supplies. According to National drinking water standards, the permissible limit of lead in drinking water is 0.05 mg/l. Deposition of air-borne lead, disposal of sewage sludge on land and disposal of industrial effluents on lands are major sources of lead contamination of soils. When incorporated in soil, lead is of very low mobility. Lead retained in soils can be slowly leached to the groundwater thereby impacting human health if consumed for potable needs. Alternatively lead deposited in soils can be absorbed by vegetation (crops/trees) and can impact human health on their consumption. Given the negative impacts of lead contamination on human health, the strong affinity of soils to retain deposited lead and the possible release for human consumption, this thesis focuses on characterization and chemical stabilization of artificially lead contaminated soils in the context of their disposal in hazardous waste landfills. The main objectives of the thesis are: characterize artificially lead contaminated soils for water leachability of lead and undrained strength characteristics as per CPCB (Central Pollution Control Board) guidelines in the context of disposal criteria in hazardous waste landfills. Artificially lead contaminated soils in compacted and slurry states are used in the thesis. Red soil (from Bangalore District, Karnataka) and river sand are used in the preparation of compacted and slurry specimens. The red soil and red soil-sand specimens are artificially contaminated in the laboratory by employing aqueous lead salt solutions as remolding fluids. Lead concentrations of 160 to 10000 mg/l are used in this study. The results of characterization studies with artificially lead contaminated soils help identify contaminated soil materials that require chemical stabilization prior to disposal into engineered landfills. Based on the results of characterization studies with artificially lead contaminated soils, lime stabilization coupled with steam curing technique is resorted to immobilize lead in the red soil-sand slurry specimens and mobilize adequate undrained strength to meet the criteria for disposal of lead contaminated soils in hazardous landfills. After this first introductory chapter, a detailed review of literature is performed towards highlighting the need to undertake chemical stabilization of artificially lead contaminated soils in Chapter 2. Chapter 3 presents a detailed experimental program of the study. Chapter 4 presents the physico-chemical and mechanical characterization of the artificially lead contaminated soils. The ability of artificially contaminated soils to release (artificially added) lead during water leaching is explained using lead speciation results performed using the Visual MINTEQ program. Experimental results illustrated that contamination of compacted red soil and red soil + sand specimens with significant lead concentrations (21 to 1300 mg/kg) resulted in major fractions of the added lead being retained in the precipitated state. Results of water leach tests revealed that lead concentrations released in the water leachates are far less than (0.0011 to 0.48 mg/l) limits prescribed by CPCB (2 mg/l) for direct disposal of lead contaminated materials into hazardous waste landfills. Unconfined compressive strengths developed by the lead contaminated red soil and red soil-sand specimens were significantly higher (100-2700 kPa) than the strength requirement (> 50 kPa) for direct disposal of hazardous wastes in engineered landfills. Lead contamination did not affect the unconfined compression strengths of the specimens as matric suction prevalent in the unsaturated compacted soils had an overriding influence on the cementation bond strength created by the lead precipitates. Visual Minteq tool was helpful in predicting the amount of added lead that was converted to insoluble precipitate form. However the amounts of water leachable lead determined experimentally and predicted by Visual Minteq were very different-Visual Minteq predicted much higher amounts of water leachable lead than experimentally determined. Experimental results revealed that the levels of lead released by the red soil-sand slurries in water leach tests were in excess (13 to 36 mg/l) of the permissible lead concentration (2 mg/l) for direct disposal of hazardous waste in landfills. Owing to water contents generally being in excess of their liquid limit water contents (w/wL ratio > 1) the slurry specimens exhibited undrained strengths below 1 kPa. Lime stabilization and steam curing of the contaminated slurry specimens was therefore resorted to control the leachibility of lead and increase undrained strengths to acceptable limits. Chapter 5 deals with lime stabilization of artificially contaminated slurries that do not meet the leachate quality (lead concentration in water < 2 mg/l) or compressive strength (> 50 kPa). Procedures are evolved for lime stabilization of such artificially contaminated soils to meet both the water leachate quality and compressive strength criteria. Lime stabilization together with steam curing of the lead contaminated slurry specimens effectively immobilized the added lead (2500 mg/kg) and imparted adequate compressive strengths to the contaminated red soil-sand slurry specimens. The lime stabilized contaminated specimens released marginal lead concentrations (0.03 to 0.45 mg/l) in the water leach; these values are much lower than permissible limit (2 mg/l) for disposal in hazardous landfills or values exhibited by the unstabilized specimens (13 to 38 mg/l). Lime addition rendered the contaminated specimens strongly alkaline (pH values ranged between 10.68 and 11.66). Combination of the experimental and Visual Minteq results suggested that precipitation of lead as hydrocerrusite in the alkaline environments (pH 10.68 to 11.95) is not the sole factor for marginal release of lead in water leach tests of the 4, 7 and 10 % lime stabilized contaminated specimens. It is possible that fraction of lead ions are entrapped within the cemented soil matrix. Water leach tests performed at range of pH values (pH 2.5 to 9.6) with 7 % lime stabilized specimens suggested that immobilization of lead as hydrocerrusite or as entrapment in the cemented soil mass in the lime stabilized specimens is practically irreversible even on exposure to extreme pH conditions. The lime stabilized contaminated specimens developed unconfined compressive strengths ranging from 100 kPa (4 % lime stabilized 40 % red soil-60 % sand specimen) to 1000 kPa (10 % lime stabilized 100 % red soil specimen). The significant growth of compressive strength upon lime stabilization is attributed to growth of inter-particle cementation bonds by the CAH (calcium aluminate hydrate) and CSH (calcium silicate hydrate) compounds formed by lime-clay reactions, slight reduction in void ratios and growth of strong inter-particle cementation bonds the during steam curing at 800C. The results of this thesis bring out a procedure to immobilize high concentrations of lead and develop adequate compressive strength of lead contaminated slurry specimens by lime stabilization + steam curing technique. The red soil acted as pozzolana in reactions with lime, while, steam curing accelerated the lime-soil reactions. The procedure can be extended to non-organic slurry wastes that are devoid of pozzolanic material (example, lead contaminated smelting sands). In slurry wastes devoid of pozzolana, materials such as fly ash can be added and the reactions between lime and fly ash would immobilize lead + develop adequate compressive strength. Also, similar to the methodology being adaptable for any non-organic slurries, it can also be extended to other toxic metal bearing wastes, example, zinc, cadmium and nickel.

Page generated in 0.0987 seconds