• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 255
  • 50
  • 33
  • 23
  • 9
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 527
  • 527
  • 394
  • 159
  • 108
  • 90
  • 79
  • 72
  • 61
  • 55
  • 54
  • 51
  • 51
  • 49
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Identificação de sistemas e avaliação da integridade de estruturas treliçadas

Miguel, Leandro Fleck Fadel January 2007 (has links)
Monitoramento da integridade estrutural (Structural health monitoring - SHM) está relacionado à implementação de alguma estratégia para a detecção de dano em estruturas de engenharia. Este estudo geralmente envolve a observação do sistema no tempo, utilizando amostras periódicas de medições da resposta dinâmica, a partir de um grupo de sensores, a fim de verificar alterações nos parâmetros modais, que podem indicar a presença do dano. Entretanto, especialmente para estruturas treliçadas, este processo tornase difícil principalmente porque nem todos os deslocamentos ou rotações nodais modelados numericamente podem ser medidos experimentalmente. Desta forma, o presente estudo tem por objetivo tratar algumas das ainda correntes questões dos sistemas de monitoramento da integridade estrutural baseados em registros de vibração. Primeiramente aborda-se um tema que, apesar de recentemente ter se mostrado importante, ainda apresenta muito poucos estudos: a influência da variação dos efeitos ambientais, especialmente a temperatura, sobre as características dinâmicas de estruturas. Com o intuito de verificar tal influência em pontes metálicas, os resultados apresentados por Ni et al. (2005) são utilizados para a realização de estudos de correlação, através de uma comparação entre equações de regressão linear e um modelo, proposto no presente trabalho, em Redes Neurais Artificiais (RNA). A seguir são estudados procedimentos de identificação estocástica de sistemas, passo fundamental para o monitoramento da integridade estrutural. Realiza-se uma revisão bibliográfica nesta área abordando a evolução dos métodos que utilizam apenas dados de resposta para a identificação. Enfoque principal é dado nos métodos de identificação estocástica de subespaço (SSI), pois se mostram os mais práticos e robustos para a determinação dos parâmetros modais da estrutura.Finalmente, o método dos vetores de localização de dano (Damage locating vector method- DLV), introduzido por Bernal (2002), é extensivamente discutido. Esta é umatécnica eficaz quando operando com um número arbitrário de sensores, modos truncados e em cenários de dano múltiplo, mantendo as operações numéricas simples. Além disto, a influência do ruído na precisão do método dos vetores de localização de dano é avaliada. Com o intuito de verificar o comportamento do método DLV perante diferentes intensidades de dano e, principalmente, na presença de ruído de medição, um estudo paramétrico é conduzido. Distintas excitações, como também diferentes cenários de dano, são numericamente testadas em uma treliça Warren contínua considerando um limitado conjunto de sensores, através de cinco níveis de ruído. Além disto, é proposto um caminho alternativo para determinar os vetores de localização de dano no procedimento do método DLV. A idéia é oferecer uma opção alternativa para a solução do problema utilizando um método algébrico amplamente difundido. A formulação original via decomposição em valores singulares é subsituída pela solução mais trivial de um problema de valores próprios. Isto é possível graças à relação algébrica entre a decomposição em valores singulares de uma matriz e a solução do problema de autovalores desta matriz pré-multiplicada por sua transposta. Os resultados finais mostraram que o método DLV, considerando a soluça alternativa, foi capaz de corretamente localizar as barras danificadas, utilizando dados somente de resposta da estrutura, mesmo considerando pequenas intesidades de dano e moderados níveis de ruído. / Structural health monitoring (SHM) refers to the implementation of some strategy for damage detection in engineering structures. This study generally involves the observation of a system over time using periodically sampled dynamic response measurements from a set of sensors in order to verify changes in modal parameters, which may indicate damage or degradation. However, especially for truss structures this process sounds difficulty mainly because not all nodal displacements or rotations in the numerical model can be experimentally measured. In this context, the present thesis aims to address some still current issues of the vibration-based structural health monitoring systems. Firstly it is introduced a subject that, although has recently shown important, still presents very few studies: the environmental effects, mainly temperature, on the structural modal properties. Seeking to address this influence on steel bridges, the results presented by Ni et al. (2005) are used to conduct correlations studies, comparing linear equation regression with an artificial neural network model (ANN), proposed in the present thesis. Procedures for stochastic systems identification are studied next, which is a fundamental phase for the SHM systems. A literature review in this field addressing the evolution of the methods that just use response data for identification is carried out. Main focus is given in the stochastic subspace identification methods (SSI), because they have been known as the most practical and robust methods to determine the structure’s modal parameters. Finally, the damage locating vector (DLV) method, introduced by Bernal (2002), is extensively discussed. This is a useful approach because is effective when operating with an arbitrary number of sensors, a truncated modal basis and multiple damage scenarios, while keeping the calculation at a low level. In addition, the noise influence on the accuracy of the damage locating vector method is evaluated. In order to verify the DLV behavior in front of different damages intensities and, mainly, in presence of measurement noise, a parametric study had been carried out. Different excitations as well as damagescenarios are numerically tested in a continuous Warren truss structure with a set of limited measurement sensors through five noise levels. Besides this, it is proposed another way to determine the damage locating vectors in the DLV procedure. The idea is to offer an alternative option to solve the problem with a more widespread algebraic method. The original formulation via singular value decomposition (SVD) is replaced by a common solution of an eigenvector and eigenvalue problem. This is possible thanks to the algebraic relationship between the singular value decomposition of a matrix and the eigenproblem solution of this matrix pre-multiplied by its transpose. The final results show that the DLV method, adopting the alternative, was able to correct locate the damaged bars, using an output-only system identification procedure, even considering small intensities of damage and moderate noise levels.
132

Ouvidoria: uma análise de sua utilização como ferramenta de gestão no âmbito da Agência Nacional de Vigilância Sanitária (Anvisa).

Buvinich, Danitza Passamai Rojas January 2009 (has links)
p. 1-95 / Submitted by Santiago Fabio (fabio.ssantiago@hotmail.com) on 2013-04-11T19:56:19Z No. of bitstreams: 1 diss Danitza.pdf: 881797 bytes, checksum: b5ac640631950d27316b651fa61e80a9 (MD5) / Approved for entry into archive by Maria Creuza Silva(mariakreuza@yahoo.com.br) on 2013-05-04T17:21:17Z (GMT) No. of bitstreams: 1 diss Danitza.pdf: 881797 bytes, checksum: b5ac640631950d27316b651fa61e80a9 (MD5) / Made available in DSpace on 2013-05-04T17:21:17Z (GMT). No. of bitstreams: 1 diss Danitza.pdf: 881797 bytes, checksum: b5ac640631950d27316b651fa61e80a9 (MD5) Previous issue date: 2009 / Sendo a Ouvidoria importante canal de contato entre os órgãos públicos e os usuários – seja ele cidadão, profissionais de saúde ou setor regulado – as demandas por ela recebidas – por meio de denúncias, pedidos de informação, reclamação, sugestão e elogios – constituem valioso insumo para avaliações gerenciais acerca da atuação das áreas internas e da própria Agência Nacional de Vigilância Sanitária (Anvisa). A pergunta que se faz é se a Anvisa se utiliza de sua Ouvidoria como ferramenta de gestão para melhoria de seus processos de trabalho. Para responder a esta questão, o estudo se propõe a identificar que tipo de informação é recebida pela Ouvidoria, quais são as áreas que recebem o maior número de pedidos de informação, se essas informações são repassadas aos gestores, se eles têm a percepção de que essas informações são insumos para a avaliação de seus processos de trabalho e se eles efetivamente já realizaram mudanças pautadas nessas informações. Visando alcançar este objetivo, procedeu-se a revisão da literatura sobre o assunto e foram realizadas entrevistas semi-estruturadas com as áreas envolvidas e com a ouvidora. Como resultado identificou-se a falta de aderência entre as atividades desempenhadas pela Ouvidoria e as competências legalmente estabelecidas, observando-se uma visível ampliação de ações executivas, que interferem na capacidade de neutralidade avaliativa desejada. Por ter se tornado o principal canal de informação – das mais variadas, desde informações educativas até às processuais – a Ouvidoria tem uma percepção bastante privilegiada do funcionamento geral da Anvisa. No entanto, a utilização dessas informações como subsídio de gestão vem tomando maior força no último ano. Ainda assim, as sugestões de ações para correção de possíveis falhas ocorrem em situações bastante críticas, não havendo entre as áreas uma cultura de análise crítica das demandas que lhes chegam dos usuários por meio da Ouvidoria. As pesquisas de campo demonstraram que a Ouvidoria teve, desde sua criação em 1999, um viés muito informativo, sendo muito mais um canal de atendimento do que efetivamente um espaço de tratamento das demandas dos usuários-cidadãos. A partir das constatações realizadas são apresentadas algumas recomendações para que o potencial estratégico das informações colhidas pela Ouvidoria seja difundido. / Salvador
133

Aplicação da análise de séries temporais para detecção e prognóstico de danos em estruturas inteligentes

Cano, Wagner Francisco Rezende [UNESP] 12 May 2015 (has links) (PDF)
Made available in DSpace on 2015-09-17T15:26:20Z (GMT). No. of bitstreams: 0 Previous issue date: 2015-05-12. Added 1 bitstream(s) on 2015-09-17T15:45:47Z : No. of bitstreams: 1 000847631.pdf: 1093508 bytes, checksum: 73b02aac5ba28423969c0c259df2c5c9 (MD5) / Esse trabalho apresenta uma abordagem baseada no processamento de séries temporais para tratar o problema de detecção e o prognóstico de danos em estruturas com sensores e atuadores piezelétricos acoplados considerando as possíveis variabilidades ambientais e operacionais. A primeira abordagem se baseia na identificação de um modelo autorregres- sivo de predição construído com um sinal temporal de resposta de referência. Métricas indicativas de danos são extraídas dos erros de predição e a separação de efeitos (carrega- mento ou danos) é feita por um algoritmo de agrupamento fuzzy. Esse procedimento é implementado em uma estrutura de material compósito ensaiada em um sistema para teste de materiais de modo a reproduzir condições de carregamento a fim de simular condições reais de operação da estrutura. Por outro lado, a segunda metodologia proposta emprega uma identificação de dois estágios. Primeiramente, um modelo autorregressivo é criado para o monitoramento estrutural como no procedimento anterior, porém, utilizando o controle estatístico de processos para detectar um dano progressivo. Em seguida, modelos autorregressivos com entradas exógenas são estimados para as condições de referência e de dano para acompanhar as variações de parâmetros e permitir a realização de um prognóstico sobre a condição estrutural futura da estrutura. Testes iniciais em uma placa de alumínio mostraram que este método é capaz de realizar um prognóstico razoável e predizer o comportamento dinâmico da estrutura associado com um nível específico de redução de massa. Ambos métodos e resultados são discutidos e comparados ao final do trabalho / This work presents an approach based on time series processing to deal with the damage detection and prognosis issue in structures coupled with piezoelectric sensors and actuators considering eventual operational and environmental variabilities. The first approach is based on the identification of a predictive autoregressive model obtained with a reference time response. Damage indicative metrics are extracted from prediction errors and the separation of effects (loading or damage) is performed by a fuzzy clustering algorithm. This procedure is carried on a composite structure attached to a material test system to reproduce loading conditions in order to simulate real operational conditions. On the other hand, the second proposed methodology employs a two step identification. First, an autoregressive model is created for structural monitoring similarly to the previous procedure, but employing statistical process control to detect progressive damage. Next, autoregressive models with exogenous inputs are estimated for reference and damaged conditions in order to track variation of parameters, allowing the prognosis of the structure's future structural condition. Initial tests on an aluminum plate indicated that this method is capable of performing a reasonable prognosis and predicting structure's dynamic behavior associated to a specific level of mass reduction. Both methods and results are discussed and compared by the end of the work
134

Monitoramento de danos estruturais utilizando sensores de nanocompósitos

Takiuti, Breno Ebinuma [UNESP] 03 March 2015 (has links) (PDF)
Made available in DSpace on 2015-07-13T12:10:21Z (GMT). No. of bitstreams: 0 Previous issue date: 2015-03-03. Added 1 bitstream(s) on 2015-07-13T12:25:21Z : No. of bitstreams: 1 000836490.pdf: 3117764 bytes, checksum: 5d9a7ede94877d0477f486615e2f510a (MD5) / Com o objetivo de assegurar a integridade estrutural de estruturas aeronáuticas, diversas técnicas de monitoramento da integridade estrutural têm sido estudadas. Uma das técnicas mais recentes é a utilização de sensores contínuos, constituídos de filmes delgados de nanocompósitos. A vantagem em se utilizar estes materiais é a possibilidade de se aplicar tais sensores em superfícies complexas, cobrindo uma grande área e utilizando poucos terminais de aquisição. Este tipo de material permite o controle das suas características mecânicas e elétricas, possibilitando a criação de um sensor customizado para cada situação. O nanocompósito mais encontrado na literatura para fins de detecção de falhas é o compósito de nanotubos de carbono (CNT), sendo que a matriz utilizada varia de acordo com cada caso. Este trabalho propõe a utilização de materiais alternativos como os nanofios de ITO (Indium tin oxide ou óxido de índio dopado com estanho) inseridos em matriz de PMMA (polimetil- metacrilato) para o revestimento da superfície a ser monitorada. Afim de verificar a efetividade destes sensores, diversos testes foram propostos. Estes testes consistem em monitorar o comportamento dos nancompósitos quando afetados por algum tipo de dano, os quais podem ser uma adição de massa, excesso de cargas tensoras ou uma trinca. Para isto, o intuito é medir as resistências elétricas entre dois pontos e verificar a influência do dano no valor medido. Em geral as resistências obtidas variaram entre 1kΩ e 10kΩ, sendo que com o aparecimento do dano, as medições apresentaram variações de mais de 30% tanto no caminho com o dano como nos caminhos em sua proximidade. Testes com o sensor em uma câmara ambiental, com controle de temperatura e umidade, mostraram que o sensor é sensível a altas temperatura e a altas umidades. Quanto à sensibilidade às tensões de tração aplicadas na placa, o sensor só mostrou alterações em sua... / With the objective of structural health monitoring (SHM) in aerospace structures, several monitoring techniques have been studied. One of the most recent techniques is based on the use of continuous sensors, made of thin films of nanocomposites. The advantage of using such materials is the possibility to apply them on complex surfaces, covering larger areas and using few acquisition terminals. Moreover, by using the nanocomposites, it is possible to control its mechanical and electrical properties, making it possible to create a customized sensor for each case. The nanocomposite found most commonly in the literature for damage detection are the carbon nanotubes (CNT) composites, while the matrix depends on each case. This work proposes the use of alternative materials such as the ITO (Indium tin oxide) nanowires inserted at PMMA (Poly(methyl methacrylate)) to be used as coatings for the monitored structure. In order to verify the effectiveness of this sensor, several tests were proposed. These tests consists on monitoring the nanocomposite's behavior when affected by some kind of damage, in which can be simulated by a mass addition, excess of load or a crack. The principle for the damage detection is to measure the electrical resistance between two points at the film sensor and verify the variations caused by the damage to these measurements. In general, the obtained resistances varied from 1kΩ to 10kΩ, while with the damage appearance the measurements varied more than 30% at the path with the damage and at the paths nearby. Tests at the environmental chamber, with temperature and humidity control, showed that the sensor is sensitive to high temperatures and humidity levels. Regarding the sensibility to stress applied to the plate, the sensor showed changes at the resistances only when the plate started to deform plastically. The obtained results are promising and indicate that this method is effective for damage detection
135

Detecção de danos em estruturas guiadas usando ondas de alta frequência

Ayala Castillo, Pedro Christian [UNESP] 28 April 2015 (has links) (PDF)
Made available in DSpace on 2015-08-20T17:10:12Z (GMT). No. of bitstreams: 0 Previous issue date: 2015-04-28. Added 1 bitstream(s) on 2015-08-20T17:25:47Z : No. of bitstreams: 1 000844021.pdf: 1761882 bytes, checksum: 8b43593be5f06b2dfe94c6564429292e (MD5) / Pesquisas em propagação de ondas para aplicação de monitoramento de integridade estrutural (SHM) tem tido um incremento considerável recentemente. Este procedimento permite detectar danos nas fases iniciais. Esta dissertação descreve um estudo teórico de propagação de ondas para o propósito de detecção e quantificação de dano em uma viga. De particular interesse é a maneira que as ondas interagem com o dano, considerado simétrico com respeito ao eixo neutro. Uma análise de uma estrutura unidimensional de ondas guiadas incorporando o atuador e sensores piezelétricos em configuração pitch-catch e pulse eco é apresentada. O modelo é desenvolvido no domínio da frequência e posteriormente transformado no domínio do tempo através da transformada de Fourier inversa. Isto permite que o efeito do dano entre o atuador e o sensor seja estudado no domínio do tempo e da frequência. Os comprimentos do atuador e do sensor e a profundidade do dano são estudados em uma viga de alumínio delgada. Mostra-se que uma abordagem no domínio do tempo é preferível em relação a abordagem no domínio da frequência para detecção e quantificação de danos na estrutura. Os resultados mostraram que ondas longitudinais são mais sensíveis a variação da espessura para um sistema simétrico e é melhor medir ondas refletidas que as transmitidas. Além disto, verificou-se que devido à natureza dispersiva das ondas de flexão é possível que em algumas situações a amplitude da onda refletida seja diminuída em vez de aumentar quando a espessura da viga é reduzida / Wave propagation research for Structural Health Monitoring (SHM) has been increasing recently. It allows the detection of damage at its early stages of development. This dissertation describes a theoretical study of wave propagation for the purpose of detection and quantification of damage in a beam structure. Of particular interest is the way in which waves interact with damage that is symmetrical with respect to the neutral axis. An analysis of a one-dimensional structural waveguide incorporating a piezoelectric actuator and sensors in a pitch-catch and pulse-echo configuration is presented. The model is developed in the frequency domain, which is then transformed into the time domain using the inverse Fourier transform. This enables the effect of damage on wave propagation between the actuator and the sensor to be investigated in both the time and the frequency domains. The size of the actuator and the sensor, and the size of damage are investigated for a thin aluminum beam. It is shown that the time-domain approach is preferable to a frequency domain approach for damage detection in this kind of structure. It is found that longitudinal waves are more sensitive to a change in thickness for a symmetrical system and it is better to measure reflected rather than transmitted waves. Further, it is found that due to the dispersive nature of bending waves, it is possible in some situations for the reflected wave amplitude to decrease rather than increase as the beam thickness is reduced
136

Monitoramento e identificação de falhas em estruturas aeronáuticas e mecânicas utilizando técnicas de computação inteligente

Lima, Fernando Parra dos Anjos [UNESP] 05 August 2014 (has links) (PDF)
Made available in DSpace on 2015-01-26T13:21:18Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-08-05Bitstream added on 2015-01-26T13:30:45Z : No. of bitstreams: 1 000802242.pdf: 571515 bytes, checksum: ecea74067f25893f1a7843d4bdc196dd (MD5) / Nesta dissertação de mestrado apresentam-se duas metodologias para o desenvolvimento de sistemas de monitoramento de integridade de estruturas mecânicas e aeronáuticas, utilizando técnicas de computação inteligente, tais como as redes neurais artificiais e os sistemas imunológicos artificiais. Neste contexto, emprega-se uma rede neural artificial ARTMAP-Fuzzy e o algoritmo de seleção negativa. Ambas as técnicas são empregadas para realizar a análise, identificação e caracterização das falhas estruturais decorrentes da estrutura. A principal aplicação destes métodos é auxiliar no processo de inspeção de estruturas mecânicas e aeronáuticas, visando detectar e caracterizar falhas, bem como, a tomada de decisões, a fim de evitar catástrofes/acidentes. Com estas propostas busca-se a concepção de novos sistemas de monitoramento de integridade estrutural que possam ser modificados facilmente, para atender a permanente evolução das tecnologias e da indústria. Para avaliar as metodologias propostas, foram realizados experimentos em laboratório para gerar um banco de dados de sinais capturados em uma viga de alumínio. Os resultados obtidos pelos métodos são excelentes, apresentando robustez e precisão / In this dissertation presents two methodologies to develop health monitoring of aircraft structures and mechanical systems, using intelligent computing techniques such as artificial neural networks and artificial immune systems. In this context, uses an ARTMAP-Fuzzy artificial neural network and the negative selection algorithm. Both techniques are used for the analysis, identification and characterization of structural failure due to the structure. The main application of these methods is to assist in the inspection of mechanical and aeronautical structures, to detect and characterize flaws as well, making decisions in order to avoid disasters/accidents. With these proposals one seeks to designing new systems for structural health monitoring that can be modified easily to cater to permanent evolution technologies and industry. To evaluate the proposed methodologies, experiments were performed in the laboratory to generate a database of captured signals in an aluminum beam. The results obtained by the methods are excellent, with robustness and accuracy
137

Identificação de sistemas e avaliação da integridade de estruturas treliçadas

Miguel, Leandro Fleck Fadel January 2007 (has links)
Monitoramento da integridade estrutural (Structural health monitoring - SHM) está relacionado à implementação de alguma estratégia para a detecção de dano em estruturas de engenharia. Este estudo geralmente envolve a observação do sistema no tempo, utilizando amostras periódicas de medições da resposta dinâmica, a partir de um grupo de sensores, a fim de verificar alterações nos parâmetros modais, que podem indicar a presença do dano. Entretanto, especialmente para estruturas treliçadas, este processo tornase difícil principalmente porque nem todos os deslocamentos ou rotações nodais modelados numericamente podem ser medidos experimentalmente. Desta forma, o presente estudo tem por objetivo tratar algumas das ainda correntes questões dos sistemas de monitoramento da integridade estrutural baseados em registros de vibração. Primeiramente aborda-se um tema que, apesar de recentemente ter se mostrado importante, ainda apresenta muito poucos estudos: a influência da variação dos efeitos ambientais, especialmente a temperatura, sobre as características dinâmicas de estruturas. Com o intuito de verificar tal influência em pontes metálicas, os resultados apresentados por Ni et al. (2005) são utilizados para a realização de estudos de correlação, através de uma comparação entre equações de regressão linear e um modelo, proposto no presente trabalho, em Redes Neurais Artificiais (RNA). A seguir são estudados procedimentos de identificação estocástica de sistemas, passo fundamental para o monitoramento da integridade estrutural. Realiza-se uma revisão bibliográfica nesta área abordando a evolução dos métodos que utilizam apenas dados de resposta para a identificação. Enfoque principal é dado nos métodos de identificação estocástica de subespaço (SSI), pois se mostram os mais práticos e robustos para a determinação dos parâmetros modais da estrutura.Finalmente, o método dos vetores de localização de dano (Damage locating vector method- DLV), introduzido por Bernal (2002), é extensivamente discutido. Esta é umatécnica eficaz quando operando com um número arbitrário de sensores, modos truncados e em cenários de dano múltiplo, mantendo as operações numéricas simples. Além disto, a influência do ruído na precisão do método dos vetores de localização de dano é avaliada. Com o intuito de verificar o comportamento do método DLV perante diferentes intensidades de dano e, principalmente, na presença de ruído de medição, um estudo paramétrico é conduzido. Distintas excitações, como também diferentes cenários de dano, são numericamente testadas em uma treliça Warren contínua considerando um limitado conjunto de sensores, através de cinco níveis de ruído. Além disto, é proposto um caminho alternativo para determinar os vetores de localização de dano no procedimento do método DLV. A idéia é oferecer uma opção alternativa para a solução do problema utilizando um método algébrico amplamente difundido. A formulação original via decomposição em valores singulares é subsituída pela solução mais trivial de um problema de valores próprios. Isto é possível graças à relação algébrica entre a decomposição em valores singulares de uma matriz e a solução do problema de autovalores desta matriz pré-multiplicada por sua transposta. Os resultados finais mostraram que o método DLV, considerando a soluça alternativa, foi capaz de corretamente localizar as barras danificadas, utilizando dados somente de resposta da estrutura, mesmo considerando pequenas intesidades de dano e moderados níveis de ruído. / Structural health monitoring (SHM) refers to the implementation of some strategy for damage detection in engineering structures. This study generally involves the observation of a system over time using periodically sampled dynamic response measurements from a set of sensors in order to verify changes in modal parameters, which may indicate damage or degradation. However, especially for truss structures this process sounds difficulty mainly because not all nodal displacements or rotations in the numerical model can be experimentally measured. In this context, the present thesis aims to address some still current issues of the vibration-based structural health monitoring systems. Firstly it is introduced a subject that, although has recently shown important, still presents very few studies: the environmental effects, mainly temperature, on the structural modal properties. Seeking to address this influence on steel bridges, the results presented by Ni et al. (2005) are used to conduct correlations studies, comparing linear equation regression with an artificial neural network model (ANN), proposed in the present thesis. Procedures for stochastic systems identification are studied next, which is a fundamental phase for the SHM systems. A literature review in this field addressing the evolution of the methods that just use response data for identification is carried out. Main focus is given in the stochastic subspace identification methods (SSI), because they have been known as the most practical and robust methods to determine the structure’s modal parameters. Finally, the damage locating vector (DLV) method, introduced by Bernal (2002), is extensively discussed. This is a useful approach because is effective when operating with an arbitrary number of sensors, a truncated modal basis and multiple damage scenarios, while keeping the calculation at a low level. In addition, the noise influence on the accuracy of the damage locating vector method is evaluated. In order to verify the DLV behavior in front of different damages intensities and, mainly, in presence of measurement noise, a parametric study had been carried out. Different excitations as well as damagescenarios are numerically tested in a continuous Warren truss structure with a set of limited measurement sensors through five noise levels. Besides this, it is proposed another way to determine the damage locating vectors in the DLV procedure. The idea is to offer an alternative option to solve the problem with a more widespread algebraic method. The original formulation via singular value decomposition (SVD) is replaced by a common solution of an eigenvector and eigenvalue problem. This is possible thanks to the algebraic relationship between the singular value decomposition of a matrix and the eigenproblem solution of this matrix pre-multiplied by its transpose. The final results show that the DLV method, adopting the alternative, was able to correct locate the damaged bars, using an output-only system identification procedure, even considering small intensities of damage and moderate noise levels.
138

FE-ANN based modeling of 3D simple reinforced concrete girders for objective structural health evaluation

Fletcher, Eric Matthew January 1900 (has links)
Master of Science / Department of Civil Engineering / Hayder A. Rasheed / The structural deterioration of aging infrastructure systems is becoming an increasingly important issue worldwide. To compound the issue, economic strains limit the resources available for repair or replacement of such systems. Over the past several decades, structural health monitoring (SHM) has proved to be a cost-effective method for detection and evaluation of damage in structures. Visual inspection and condition rating is one of the most commonly applied SHM techniques, but the effectiveness of this method suffers due to its reliance on the availability and experience of qualified personnel performing largely qualitative damage evaluations. The artificial neural network (ANN) approach presented in this study attempts to augment visual inspection methods by developing a crack-induced damage quantification model for reinforced concrete bridge girders that requires only the results of limited field measurements to operate. Simply-supported three-dimensional reinforced concrete T-beams with varying geometric, material, and cracking properties were modeled using Abaqus finite element (FE) analysis software. Up to five cracks were considered in each beam, and the ratios of stiffness between cracked and healthy beams with the same geometric and material parameters were measured at nine equidistant nodes along the beam. Two feedforward ANNs utilizing backpropagation learning algorithms were then trained on the FE model database with beam properties serving as inputs for both neural networks. The outputs for the first network consisted of the nodal stiffness ratios, and the sole output for the second ANN was a health index parameter, computed by normalizing the area under the stiffness ratio profile over the span length of the beam. The ANNs achieved excellent prediction accuracies with coefficients of determination (R²) exceeding 0.99 for both networks. Additional FE models were created to further assess the networks’ prediction capabilities on data not utilized in the training process. The ANNs displayed good prediction accuracies (R² > 0.8) even when predicting damage levels in beams with geometric, material, and cracking parameters dissimilar from those found in the training database. A touch-enabled user interface was developed to allow the ANN models to be utilized for on-site damage evaluations. The results of this study indicate that application of ANNs with FE modeling shows great promise in SHM for damage evaluation.
139

Feature and Statistical Model Development in Structural Health Monitoring

January 2016 (has links)
abstract: All structures suffer wear and tear because of impact, excessive load, fatigue, corrosion, etc. in addition to inherent defects during their manufacturing processes and their exposure to various environmental effects. These structural degradations are often imperceptible, but they can severely affect the structural performance of a component, thereby severely decreasing its service life. Although previous studies of Structural Health Monitoring (SHM) have revealed extensive prior knowledge on the parts of SHM processes, such as the operational evaluation, data processing, and feature extraction, few studies have been conducted from a systematical perspective, the statistical model development. The first part of this dissertation, the characteristics of inverse scattering problems, such as ill-posedness and nonlinearity, reviews ultrasonic guided wave-based structural health monitoring problems. The distinctive features and the selection of the domain analysis are investigated by analytically searching the conditions of the uniqueness solutions for ill-posedness and are validated experimentally. Based on the distinctive features, a novel wave packet tracing (WPT) method for damage localization and size quantification is presented. This method involves creating time-space representations of the guided Lamb waves (GLWs), collected at a series of locations, with a spatially dense distribution along paths at pre-selected angles with respect to the direction, normal to the direction of wave propagation. The fringe patterns due to wave dispersion, which depends on the phase velocity, are selected as the primary features that carry information, regarding the wave propagation and scattering. The following part of this dissertation presents a novel damage-localization framework, using a fully automated process. In order to construct the statistical model for autonomous damage localization deep-learning techniques, such as restricted Boltzmann machine and deep belief network, are trained and utilized to interpret nonlinear far-field wave patterns. Next, a novel bridge scour estimation approach that comprises advantages of both empirical and data-driven models is developed. Two field datasets from the literature are used, and a Support Vector Machine (SVM), a machine-learning algorithm, is used to fuse the field data samples and classify the data with physical phenomena. The Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) is evaluated on the model performance objective functions to search for Pareto optimal fronts. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2016
140

Detecção de danos em estruturas guiadas usando ondas de alta frequência /

Ayala Castillo, Pedro Christian. January 2015 (has links)
Orientador: Vicente Lopes Junior / Co-orientador: Michael John Brennan / Banca: Fabricio Cesar Lobato de Almeida / Banca: José Roberto de França Arruda / Resumo: Pesquisas em propagação de ondas para aplicação de monitoramento de integridade estrutural (SHM) tem tido um incremento considerável recentemente. Este procedimento permite detectar danos nas fases iniciais. Esta dissertação descreve um estudo teórico de propagação de ondas para o propósito de detecção e quantificação de dano em uma viga. De particular interesse é a maneira que as ondas interagem com o dano, considerado simétrico com respeito ao eixo neutro. Uma análise de uma estrutura unidimensional de ondas guiadas incorporando o atuador e sensores piezelétricos em configuração pitch-catch e pulse eco é apresentada. O modelo é desenvolvido no domínio da frequência e posteriormente transformado no domínio do tempo através da transformada de Fourier inversa. Isto permite que o efeito do dano entre o atuador e o sensor seja estudado no domínio do tempo e da frequência. Os comprimentos do atuador e do sensor e a profundidade do dano são estudados em uma viga de alumínio delgada. Mostra-se que uma abordagem no domínio do tempo é preferível em relação a abordagem no domínio da frequência para detecção e quantificação de danos na estrutura. Os resultados mostraram que ondas longitudinais são mais sensíveis a variação da espessura para um sistema simétrico e é melhor medir ondas refletidas que as transmitidas. Além disto, verificou-se que devido à natureza dispersiva das ondas de flexão é possível que em algumas situações a amplitude da onda refletida seja diminuída em vez de aumentar quando a espessura da viga é reduzida / Abstract: Wave propagation research for Structural Health Monitoring (SHM) has been increasing recently. It allows the detection of damage at its early stages of development. This dissertation describes a theoretical study of wave propagation for the purpose of detection and quantification of damage in a beam structure. Of particular interest is the way in which waves interact with damage that is symmetrical with respect to the neutral axis. An analysis of a one-dimensional structural waveguide incorporating a piezoelectric actuator and sensors in a pitch-catch and pulse-echo configuration is presented. The model is developed in the frequency domain, which is then transformed into the time domain using the inverse Fourier transform. This enables the effect of damage on wave propagation between the actuator and the sensor to be investigated in both the time and the frequency domains. The size of the actuator and the sensor, and the size of damage are investigated for a thin aluminum beam. It is shown that the time-domain approach is preferable to a frequency domain approach for damage detection in this kind of structure. It is found that longitudinal waves are more sensitive to a change in thickness for a symmetrical system and it is better to measure reflected rather than transmitted waves. Further, it is found that due to the dispersive nature of bending waves, it is possible in some situations for the reflected wave amplitude to decrease rather than increase as the beam thickness is reduced / Mestre

Page generated in 0.1017 seconds