• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 46
  • 22
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 176
  • 176
  • 176
  • 64
  • 61
  • 41
  • 37
  • 35
  • 27
  • 26
  • 24
  • 24
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An integrated systems approach to understanding distortion and residual stress during thermal processing: design for heat treating

Yu, Haixuan 16 December 2019 (has links)
Heat treatment processes are used to develop the desired mechanical properties for steels. Unfortunately, heat treatment, especially quenching, can cause distortion. Failure to meet geometry specifications can result in extensive rework or rejection of the parts. A series of quenching simulations, using DANTE, have been conducted on an AISI 4140 steel Navy C-ring distortion coupon and a WPI designed plate with a hole to determine the effects of quenching process parameters including part geometry, agitation during quenching, and quench start temperatures on distortion. The heat transfer coefficients (HTC) of the quenchant with selected pump speeds were measured by CHTE quench probe system, which is the key input for heat treatment simulation. The maximum HTC of the quenching oil was increased from 2350 W/m2K to 2666 W/m2K with higher pump speed. Quenching experiments were also conducted. It was found that the experimental measured gap opening of the standard Navy C-rings increased from 0.307mm without agitation to 0.536mm at a high agitation. Quench start temperature does not have a significant effect on the gap opening. The experimental results showed good agreement with simulation results. The important processing parameter identification was conducted using design of experiments (DoE) coupled with analysis of variance (ANOVA). The effect of processing parameters in decreasing order of importance were determined to be: quenchant type, part geometry, agitation speed, quenching orientation, quenchant temperature, immersion rates, and quench starts temperature. Based on the simulation and experimental results, it was found that the two most import parameters are: 1. The part geometry and size (product design) 2. The temperature dependent heat transfer coefficients between the part and the quenchant (process design) The coupling of these product and process parameters is necessary to apply the systems analysis that must be accomplished to understand the interaction between the part design and process design parameters. This coupling can be accomplished by locally applying the well-known Biot number. Bi (T) = h(T) * L / k(T) Where h(T) = film coefficient or convective heat transfer coefficient [W/m2*K]. LC = characteristic length, which is generally described as the volume of the body divided by the surface area of the body [m]. k(T) = thermal conductivity of the body [W/m*k] The concept of a local Biot number is introduced to quantify the local variations of part size, geometry and heat transfer coefficient. First, a large Bi indicates large temperature gradients within the part. Second, large local (geometry dependent) variations in Bi number will lead to large lateral temperature gradients. Therefore, variations in local Bi can lead to large temperature gradients and therefore high stress during quenching and finally distortion. This local Bi concept can be used in a systems approach to designing a part and the quenching system. This systems approach can be designated as design for heat treating.
12

Local heat transfer coefficients in an annular passage with flow turbulation

Steyn, Rowan Marthinus January 2020 (has links)
In this experimental and numerical investigation, the use of flow turbulation was considered as a method to increase local heat transfer coefficients in annular heat transfer passages. Experimental data was obtained for cases with and without inserted ring turbulators within a horizontal annular test section using water for average Reynolds numbers ranging from 2000 to 7500 and average Prandtl numbers ranging from 6.73 to 6.79. The test section was heated uniformly on the inner annular wall and had a hydraulic diameter of 14.8mm, a diameter ratio (inner wall diameter to outer wall diameter) of 0.648, and a length to hydraulic diameter ratio of approximately 74. A set of circular cross sectioned ring-type turbulators were used which had a thickness of 1mm, a ring diameter of 15.1mm and a pitch of 50mm. It was found that the presence of the flow turbulators increased the average Nusselt number by between 33.9% and 45.8%. The experimental tests were followed by numerical simulations to identify the response in the heat transfer coefficient by changing the geometry of the turbulators. For this, the turbulator diameters were ranged from 0.5 mm to 2 mm, and the gap size (between the inner wall and a turbulator ring) ranged from 0.125 mm to 4 mm at a pitch of 50 mm. The results showed that the use of turbulators increased the Nusselt numbers by a maximum of 34.8% and that the maximum can be achieved for a turbulator diameter of 2 mm and a gap size of 0.25 mm, for all the Reynolds numbers tested. From the numeric determined pressure drop values it was found that the smaller gap size had the lowest pressure drop and the smallest turbulators also produced the lowest pressure drop. / Dissertation (MEng)--University of Pretoria 2020 / South African Centre for High Performance Computing (CHPC) / Mechanical and Aeronautical Engineering / MEng / Unrestricted
13

An integrated systems approach to understanding distortion and residual stress during thermal processing: design for heat treating

Yu, Haixuan 12 December 2019 (has links)
Heat treatment processes are used to develop the desired mechanical properties for steels. Unfortunately, heat treatment, especially quenching, can cause distortion. Failure to meet geometry specifications can result in extensive rework or rejection of the parts. A series of quenching simulations, using DANTE, have been conducted on an AISI 4140 steel Navy C-ring distortion coupon and a WPI designed plate with a hole to determine the effects of quenching process parameters including part geometry, agitation during quenching, and quench start temperatures on distortion. The heat transfer coefficients (HTC) of the quenchant with selected pump speeds were measured by CHTE quench probe system, which is the key input for heat treatment simulation. The maximum HTC of the quenching oil was increased from 2350 W/m2K to 2666 W/m2K with higher pump speed. Quenching experiments were also conducted. It was found that the experimental measured gap opening of the standard Navy C-rings increased from 0.307mm without agitation to 0.536mm at a high agitation. Quench start temperature does not have a significant effect on the gap opening. The experimental results showed good agreement with simulation results. The important processing parameter identification was conducted using design of experiments (DoE) coupled with analysis of variance (ANOVA). The effect of processing parameters in decreasing order of importance were determined to be: quenchant type, part geometry, agitation speed, quenching orientation, quenchant temperature, immersion rates, and quench starts temperature. Based on the simulation and experimental results, it was found that the two most import parameters are: 1. The part geometry and size (product design) 2. The temperature dependent heat transfer coefficients between the part and the quenchant (process design) The coupling of these product and process parameters is necessary to apply the systems analysis that must be accomplished to understand the interaction between the part design and process design parameters. This coupling can be accomplished by locally applying the well-known Biot number. Bi (T) = h(T) * L / k(T) Where h(T) = film coefficient or convective heat transfer coefficient [W/m2*K]. LC = characteristic length, which is generally described as the volume of the body divided by the surface area of the body [m]. k(T) = thermal conductivity of the body [W/m*k] The concept of a local Biot number is introduced to quantify the local variations of part size, geometry and heat transfer coefficient. First, a large Bi indicates large temperature gradients within the part. Second, large local (geometry dependent) variations in Bi number will lead to large lateral temperature gradients. Therefore, variations in local Bi can lead to large temperature gradients and therefore high stress during quenching and finally distortion. This local Bi concept can be used in a systems approach to designing a part and the quenching system. This systems approach can be designated as design for heat treating.
14

FEM and CFD Co-simulation Study of a Ventilated Disc Brake Heat Transfer

Tang, Jinghan, Qi, Hong Sheng January 2013 (has links)
yes / This paper presents a two-way thermally-coupled FEM-CFD co-simulation method for ventilated brake disc rotor heat transfer analysis. Using a third party coupling interface for data mapping and exchange, the FEM and CFD models run simultaneously under a standard heavy duty braking test condition. By comparison with conventional one-way coupling methods and experimental results, the performance of the co-simulation system has been investigated in terms of prediction of the heat transfer coefficient (HTC) and disc temperatures as well as computing time used. The results illustrate that this co-simulation method has good capacity in providing cooling effect and temperature predictions. It also shows that the data exchange between the FEM and CFD codes at every time increment is highly accurate and efficient throughout 10 brake applications. It can be seen that the cosimulation method is more time efficient, convenient and robust compared to previous oneway coupling methods. To utilize the potential of this method, future works are proposed.
15

Evaluation of heat transfer at the cavity-polymer interface in microinjection moulding based on experimental and simulation study

Babenko, Maksims, Sweeney, John, Petkov, P., Lacan, F., Bigot, S., Whiteside, Benjamin R. 08 November 2017 (has links)
Yes / In polymer melt processing, the heat transfer coefficient (HTC) determines the heat flux across the interface of the polymer melt and the mould wall. The HTC is a dominant parameter in cooling simulations especially for microinjection moulding, where the high surface to volume ratio of the part results in very rapid cooling. Moreover, the cooling rate can have a significant influence on internal structure, morphology and resulting physical properties. HTC values are therefore important and yet are not well quantified. To measure HTC in micromoulding, we have developed an experimental setup consisting of a special mould, and an ultra-high speed thermal camera in combination with a range of windows. The windows were laser machined on their inside surfaces to produce a range of surface topographies. Cooling curves were obtained for two materials at different processing conditions, the processing variables explored being melt and mould temperature, injection speed, packing pressure and surface topography. The finite element package Moldflow was used to simulate the experiments and to find the HTC values that best fitted the cooling curves, so that HTC is known as a function of the process variables explored. These results are presented and statistically analysed. An increase in HTC from the standard value of 2500 W/m2C to values in the region 7700 W/m2C was required to accurately model the observations. / EPSRC
16

Understanding the Role of the Heat Transfer Coefficient Between Tool/Workpiece Interface During Friction Stir Welding

Goodson, Matthew 03 December 2024 (has links) (PDF)
The heat transfer coefficient is a key parameter in modeling friction stir welding and has yet to be measured experimentally. The importance of this parameter was shown through validating friction stir models on both sides of the tool/workpiece interface. Both a transient plunge and a steady state model were validated by matching experimental temperatures. The steady state tool temperatures were matched (with in 2.5%), but the steady state workpiece temperatures were off by around 20%. The transient model of the FSW plunge showed the effect of varying the ℎ��/�� on workpiece temperatures and tool temperatures. Two methods were looked at to measure this parameter. Using frequency-domain thermoreflectance (FDTR) with a reflective sensor within the tool was initially looked at as a novel way to measure ℎ��/��, but the difficulty of integrating the system with the FSW machine led to its ultimate failure. The 3�� method was the second choice to perform this measurement. The method was not able to measure ℎ��/��, but the method shows promise that after further work it should be able to perform this measurement. Successful thermal conductivity measurements were performed. A initial experimental setup for measuring contact resistance was achieved. Integration of a 3�� sensor with the FSW environment was attempted. High temperature wire bonding was successful; several attempts at sensor integration with the tool failed; and plans for machine integration look promising.
17

Development of an improved thermal model of the human body and an experimental investigation of heat transfer from a moving cylinder

Sun, Xiaoyang January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Steve Eckels / A new human thermal model was developed to predict the thermal responses of human body in various environments. The new model was based on Smith's model, which employed finite element method to discretize the human body. The body parts in our new model were not limited to the cylindrical shape as in Smith's model, but subjected to arbitrary shapes. Therefore, the new model is capable of dealing with more complicated shapes of the human body. Steady-state and transient temperatures of fifteen body parts were calculated for three environments: cold, neutral, and warm. Our results were compared with the data from Zhang's experimental research on the human subjects. For all three conditions, our results showed better agreement with experimental data than Smith's results did. The maximal deviation is 1ºC for neutral and warm condition; for cold condition, a maximal deviation of 3.5ºC is reported at hand. The comparison indicated that our new model could provide a more accurate prediction on the body temperatures. Follow-up experiments were conducted to investigate the local and overall heat transfer from a moving cylinder in air flow. This study was expected to provide the local convective heat transfer coefficients of the human body to our new human thermal model to simulate moving humans. An experiment of a stationary cylinder in cross flow was performed to verify the accuracy and consistency of our system. Then, the experiment of a transverse oscillating cylinder in cross flow was conducted, with a oscillation frequency of 0.15 and Strouhal number of 0.3 to 1.5, depending on wind velocity. The overall Nusselt number (Nu) of the oscillating cylinder remained unaffected, compared to the stationary cylinder. This observation showed agreement with previous studies. The pivot experiment was performed to investigate swinging movement of human arms. The cylinder was positioned axially in cross flow, and reciprocated on a fixed point between horizontal and vertical positions under three wind speeds and two oscillating frequencies. The results showed that the overall Nu was between the Nu at horizontal and vertical positions in stationary state. A correlation was presented to predict the Nu of pivotal moving cylinder by using stationary Nu at horizontal and vertical positions. The correlation was proved to be valid ( error less than 5%) within the range of conditions in our experiment.
18

Method Development for Heat Transfer Predictions in Channel Flows : An efficient CFD approach for ribbed stationary channels

Leskovec, Martin January 2016 (has links)
Gas turbines are today used in numerous industrial and aeronautical applications. To increase the specific power output and efficiency, a high turbine inlet gas temperature is desired. The high temperature leads to the need of cooling critical components in the hot gas path. Siemens Industrial Turbomachinery AB, SIT AB, in Finspång manufactures gas turbines where the internal cooling of critical components is done through serpentine channels. To utilize the cooling air as efficiently as possible, vortex creating objects are placed inside the channel which result in higher heat transfer. To compute the heat transfer in the channel, correlation based approaches that will give a uniform value for an entire channel are often used. This thesis contains two parts. First, investigating how an automated CAE process can be developed that is able to be incorporated into the SIT AB CAE process of today and with a future vision of a, basically, "one-click-CFD" approach for non-generic geometries. Secondly, how CFD simulations for predicting heat transfer levels inside the cooling channels with high accuracy and that captures local features of heat transfer can be performed. The suggested CAE approach involves the CAD-tool NX for geometry creation and for managing an entire CFD project the ANSYS software Workbench, combined with ANSYS Meshing for generation of computational grid, CFX-pre and CFX for pre-processing and solving and CFD-post for post-processing. This approach is suggested for generic geometries due to the simplicity in incorporating it into existing CAE processes. For the future vision of non-generic geometries, the inhouse developed project manager Concept is suggested. It allows for customized coupling between a broader range of available software tools. To validate the CFX model and to investigate how the CFD calculations should be performed, two cases were set up, one where the CFD model and the inhouse code was compared to experimental data of a generic geometry and one where the CFD model and the inhouse code were compared at engine-like conditions. The results for the experimental case resulted in heat transfer coefficients from the CFD model that were 30% off from experimental data, and the inhouse code maximum deviation was 10%. Compared to previous numerical studies this was considered to be of acceptable accuracy, and the location of data extraction points were considered to cause the deviation in the CFD model. For the engine-like case both CFD and inhouse code predicted the heat transfer level as expected. The simulations were performed in steady state mode on automatically generated meshes with the SST-Reattachment turbulence model. The Reynolds number varied from 10 000 to 80 000 and the meshes were around 4-10M elements in size.
19

Análise experimental da influência da adição de nanopartículas a água no coeficiente de transferência de calor para escoamentos monofásicos e ebulição convectiva em microcanais / Experimental analysis of the influence of adding nanoparticles into DI-water on the heat transfer coefficient for single-phase flow and convective boiling inside microchannels

Moreira, Tiago Augusto 24 February 2017 (has links)
Dissipadores de calor baseados em microcanais são apresentados como solução para a remoção de fluxos de calor elevados em espaços restritos, pois proporcionam elevados coeficientes de transferência de calor quando comparados a canais convencionais. Tais trocadores também proporcionam elevadas razões entre a área superficial em contato com o refrigerante por unidade de volume do dissipador. Além dos microcanais, a utilização de nanofluidos também se apresenta como tecnologia com potencial de incremento do coeficiente de transferência de calor. Os nanofluidos consistem na adição de nanopartículas a um fluido base visando alterar suas propriedades de transporte termodinâmicas. Neste contexto, o objetivo do presente estudo é avaliar o coeficiente de transferência de calor para escoamentos monofásicos e ebulição convectiva de nanofluidos aquosos no interior de microcanais. Para isto, foram realizados experimentos em canais com diâmetro de 1,1 mm e comprimento de 200 mm para água deionizada, nanofluidos de alumina com diâmetros de 20-30 e 40-80 nm, nanofluidos de dióxido de silício com diâmetros de 15 e 80 nm, e nanofluidos de cobre com diâmetro de 25 nm. Estas soluções foram ensaiadas para concentrações volumétricas de nanopartículas de 0,001, 0,01 e 0,1, velocidades mássicas de 200, 400 e 600 kg/m2s e fluxos de calor de 20 a 350 kW/m2. A análise dos resultados revelou que a adição de nanopartículas a água deionizada proporciona o incremento do número de Nusselt para escoamentos monofásicos, principalmente na região inicial do tubo. Concluiu-se que os efeitos da adição de nanopartículas a um fluido base no coeficiente de transferência de calor durante a ebulição convectiva estão relacionados ao recobrimento da superfície com uma camada porosa. A deposição de nanopartículas com diâmetro inferior a 30 nm resultou na redução do coeficiente de transferência de calor e das instabilidades térmicas do escoamento em relação a água deionizada. O coeficiente de transferência de calor e as instabilidades térmicas não apresentaram variações significativas da deposição de nanopartículas com diâmetro superior a 40 nm. Por meio da análise da textura das superfícies recobertas e do critério de nucleação proposto por Kandlikar et al. (1997) concluiu-se que tal comportamento encontra-se associado aos efeitos do acabamento superficial na densidade de cavidades de nucleação ativas. / Microchannels based heat exchangers were introduced as a solution to high heat flux removal in restrict spaces due to their high heat transfer coefficients compared to heat exchangers based on conventional channels. The high ratio of surface are per volume is an additional advantage to microchannels in relation to conventional channels. Beside the microchannels technology, the nanofluids also present itself as a technique with potential to increase the heat transfer coefficient. Nanofluids consist of a solution containing nanoparticles dispersed in a base fluid with the goal to improve its thermodynamic and transport properties. In this context, the objective of the present study is to evaluate the heat transfer coefficient for single-phase flow and convective boiling of aqueous nanofluids inside microchannels. Experiments were performed for channels with internal diameter of 1.1mm and 200 mm long for DI-water, nanofluids containing alumina- (nanoparticles diameters of 20-30 and 40-80 nm), silicon dioxide (nanoparticles diameters of 15 and 80 nm), and copper (nanoparticles diameter of 25 nm). These solutions were evaluated for volumetric concentrations of 0.001, 0.01 and 0.1%, mass velocities of 200, 400 and 600 kg/m2s and heat fluxes from 20 to 350 kW/m2. The analysis of the results revealed that the addition of nanoparticles to DI-water causes an increment in the Nusselt number for single phase flows, especially at the inlet of the tube. The results for flow boiling indicated that the effects of adding nanoparticles to the base fluid are related to the deposition on the heating surface of a nanoparticles porous layer due to the boiling process. The deposition of nanoparticles smaller than 30 nm promoted a reduction of the heat transfer coefficient compared to DI-water on a clean surface, and thermal instabilities were minimized. For the deposition of nanoparticles larger than 40 nm these parameters did not presented significant variations in comparison to DI-water. A combined analysis of the surfaces finishing and the criterion of Kandlikar et al. (1997) for bubble nucleation revealed that such behaviors are correlated to the effects of the surface texture associated to the boiling process on the density of active nucleation cavities.
20

Modelo de simulação e análise teórico-experimental de serpentinas resfriadoras e desumidificadoras de ar / Model of simulation and analysis of cooling and air dehumidifuing coils

Mello, Richard Garcia Alves de 02 February 2001 (has links)
Em sistemas frigoríficos de compressão a vapor, o evaporador é o equipamento responsável direto pela retirada de calor de ambientes refrigerados. Por esta razão, este componente é a fonte de investigação do presente estudo, o qual teve por objetivo principal a busca por alternativas para a melhoria de desempenho térmico em sistema frigoríficos. Isto posto, o trabalho foi desenvolvido em três frentes de estudo, as quais encontram-se interligadas entre si: desenvolvimento de programa de simulação de serpentinas resfriadoras; realização de ensaios para determinação das capacidades de trocadores de calor; e revisão bibliográfica circunstanciada do coeficiente de transferência de calor do lado do ar. O programa de simulação desenvolvido, o qual tomou como base o modelo proposto por Rich, mostrou-se ser uma ótima ferramenta de trabalho, tanto no meio acadêmico como no industrial. Como conseqüência da elaboração do programa, fez-se uso de correlações já existentes para determinação dos coeficientes de transferência de calor do lado do refrigerante, Bo Pierre, e do lado do ar, McQuiston, sendo esta última escolhida a partir de um sumário de correlações levantadas quando no estudo dos coeficientes de transferência de calor descritos acima. Para que o programa fosse validado como ferramenta de trabalho, foram realizadas simulações dos ensaios das serpentinas testadas e seus resultados confrontados. Tais resultados apresentam uma adequada concordância,possibilitando validar o programa. Os ensaios foram realizados segundo recomendações da norma ASHRAE 25/1992. Dos dados obtidos nos testes, também foi proposto uma correlação para o fator j-Colburn para superfícies secas; no entanto, tratou-se apenas de especular acerca de seu comportamento com as demais correlações, as quais obtiveram boa concordância. / In refrigerating systems of compression to vapour, the evaporator is the direct responsible equipment for remove of heat of cooling environments. In this way, the component is the source of investigation of the present study, which had for main objective the search for alternatives to improvement the performance thermal in refrigeration systems. The research was developed in three studies fronts, that are connected each other: development of program of simulation of cooling coils; tests to find the performance of heat exchange; and revision bibliographical of the coefficient of heat transfer of air. The developed simulation program, based in the Rich\'s model, it showed to be a good work tool, as in the academic, as in the industrial behaviour. As consequence of the elaboration the program, it was used existents correlations to calculation the coefficients of refrigerant heat transfer, Bo Pierre, and to air, McQuiston, the last one was choose from a correlation\'s summary. Same simulations were made to validated the program of the tested serpentines and the results were confronted. Such results presented an appropriate agreement that contributed to validate the program. The tests were accomplished according to recommendations of the norm ASHRAE 25/1992. One correlation was proposed for the factor j-Colburn for dry surfaces in base of the testes results; however, the purpose was to speculated its behaviour with the other correlations, which obtained good agreement.

Page generated in 0.0978 seconds