Spelling suggestions: "subject:"heat exchanger"" "subject:"heat exchange""
231 |
Development of ice particle production system for ice jet processShanmugam, Dinesh Kumar, dshanmugam@swin.edu.au January 2005 (has links)
This thesis presents a comprehensive study of the ice particle production process through experimentation and numerical methods using computational fluid dynamics (CFD) that can be used to produce ice particles with controlled temperature and hardness for use in ice jet (IJ) process for industrial applications. The analytical and numerical modeling for the heat exchanger system are developed that could predict the heat, mass and momentum exchange between the cold gas and water droplets. Further, the feasibility study of the deployment of ice particles produced from the ice jet system for possible cleaning and blasting applications are analyzed numerically. Although the use of Abrasive Water Jet (AWJ) technology in cutting, cleaning, machining and surface processing is a very successful industrial process, a considerable amount of secondary particle waste and contamination impingement by abrasive materials has been an important issue in AWJ process. Some alternate cryogenic jet methods involving vanishing abrasive materials, such as plain liquid nitrogen or carbon dioxide have been tried for these applications, but they also suffer from certain drawbacks relating to the quality, safety, process control and materials handling. The use of ice jet process involving minute ice particles has received relatively little attention in industrial applications. Some researches have concentrated on the studies of effects of Ice Jet outlet parameters of the nozzle and focus tube for machining soft and brittle materials. Most of the work in this area is qualitative and researchers have paid a cursory attention to the ice particles temperature and the efficiency of production of these particles. An extensive investigation to gain insight knowledge into the formulation of ice formation process parameters is required in arriving at a deeper understanding of the entire ice jet process for production application. Experimental investigations were focussed on the measurement of ice particle temperature, phase transitions, ice particle diameter, coalescence and hardness test. The change in ice particle diameter from the inlet conditions to the exit point of the heat exchanger wasinvestigated using the experimental results. These observations were extended to numerical analysis of temperature variations of ice particles at different planes inside the custom built heat exchanger. The numerical predictions were carried out with the aid of visualization studies and temperature measurement results from experiments. The numerical models were further analysed to find out the behaviour of ice particles in the transportation stage, the mixing chamber of the nozzle and focus tube. This was done to find out whether the methodology used in this research is feasible and if it can be used in applications such as cleaning, blasting, drilling and perhaps cutting. The results of the empirical studies show that ice particles of desired temperature and hardness could be produced successfully with the current novel design of the heat exchanger. At the optimum parameters, ice particles could be produced below -60�C, with hardness of particles comparable to gypsum (Moh�s hardness of 1.5 to 3). The visualization studies of the process assisted in observation of the phases of ice at various points along the heat exchanger. The results of numerical analysis were found to agree well with the experiments and were supported by the statistical model assessments. Numerical analyses also show the survival of ice particles at the nozzle exit even with high-pressure, high-velocity water/air mixture.
|
232 |
Hybrid solid-state/fluidic cooling for thermal management of electronic componentsSahu, Vivek 31 August 2011 (has links)
A novel hybrid cooling scheme is proposed to remove non-uniform heat flux in real time from the microprocessor. It consists of a liquid cooled microchannel heat sink to remove the lower background heat flux and superlattice coolers to dissipate the high heat flux present at the hotspots. Superlattice coolers (SLC) are solid-state devices, which work on thermoelectric effect, and provide localized cooling for hotspots. SLCs offer some unique advantage over conventional cooling solutions. They are CMOS compatible and can be easily fabricated in any shape or size. They are more reliable as they don't contain any moving parts. They can remove high heat flux from localized regions and provide faster time response. Experimental devices are fabricated to characterize the steady-state, as well as transient performance, of the hybrid cooling scheme. Performance of the hybrid cooling scheme has been examined under various operating conditions. Effects of various geometric parameters have also been thoroughly studied. Heat flux in excess of 300 W/cm² has been successfully dissipated from localized hotspots. Maximum cooling at the hotspot is observed to be more than 6 K. Parasitic heat transfer to the superlattice cooler drastically affects its performance. Thermal resistance between ground electrode and heat sink, as well as thermal resistance between ground electrode and superlattice cooler, affect the parasitic heat transfer from to the superlattice cooler. Two different test devices are fabricated specifically to examine the effect of both thermal resistances. An electro-thermal model is developed to study the thermal coupling between two superlattice coolers. Thermal coupling significantly affects the performance of an array of superlattice coolers. Several operating parameters (activation current, location of ground electrode, choice of working fluid) affect thermal coupling between superlattice coolers, which has been computationally as well as experimentally studied. Transient response of the superlattice cooler has also been examined through experiments and computational modeling. Response time of the superlattice cooler has been reported to be less than 35 µs.
|
233 |
High Temperature Gas to Liquid Metal Foam and Wire Mesh Heat ExchangersRezaey, Reza 26 November 2012 (has links)
Metal foams and wire meshes are open cell structures with low weight and density, high permeability and high thermal conductivity which make them attractive for a wide range of industrial applications involving fluid flow and heat transfer. In this study, the effect of natural convection, radiation and heat transfer enhancement of metal foams and wire meshes of 10 and 40 PPI (pores per inch) heat exchangers were examined and compared for different heat exchanger orientation, coolant flow rate and atmosphere temperature.
Thermal spray coating processes were also used in development of a new class of high temperature stainless steel heat exchangers. Stainless steel wire mesh heat exchangers were prototyped by connecting the tube to the wire mesh using wire arc thermal spray coating. Thermal spray coating provided efficient connections between the wire mesh and the tubes’ outer surface, and has potential to replace expensive brazing or other metal connection techniques.
|
234 |
Adhesive microlamination protocol for low-temperature microchannel arraysPaulraj, Prawin 26 March 2013 (has links)
A new adhesive bonding method is introduced for microlamination architectures, for producing low-temperature microchannel arrays in a wide variety of metals. Sheet metal embossing and chemical etching processes have been used to produce sealing bosses and flow features, resulting in approximately 50% fewer laminae over traditional methods. These lamina designs are enabled by reduced bonding pressures required for the new method. An assembly process using adhesive dispense and cure is outlined to produce leak-free devices. Feasible fill ratios were determined to be 1.1 in general and 1.25 around fluid headers, largely due to gaps between faying surfaces caused by surface roughness. Bond strength investigation reveals robustness to surface conditions and a bond strength of 5.5-8.5 MPa using a 3X safety factor. Dimensional characterization reveals a two sigma (95%) post-bonded channel height tolerance under 10% (9.6%) after bonding. Patterning tolerance and surface roughness of the faying laminae were found to have a significant influence on the final postbonded channel height. Leakage and burst pressure testing on several samples has established confidence that adhesive bonding can produce leak-free joints. Operating pressures up to 413 kPa have been satisfied, equating to tensile pressure on bond joints of 1.9 MPa. Higher operating pressures can be accommodated by increasing the bond area of devices. A two-fluid counterflow microchannel heat exchanger has been redesigned, fabricated and tested to demonstrate feasibility of the new method. Results show greater effectiveness and higher heat transfer rates, suggesting a smaller device than the original heat exchanger. A maximum effectiveness of 82.5% was achieved with good agreement between theoretical and experimental values. Although thermal performance was improved, higher pressure drops were noted. Pressure drops were predicted with a maximum error of 16% between theoretical and experimental values. Much of the pressure drop was found to be in the device manifolds, which can be improved in subsequent designs. Fluid flow simulation results show a 45-65X reduction in fluid leakage velocity past sealing bosses, thereby mitigating adhesive erosion concerns. Theoretical models indicate that the worst-case adhesive erosion rate is 1/12th the rate of aluminum and 1/7th the rate of stainless steel, implying satisfactory reliability in high fluid velocity applications. Economic comparison indicates an 83% reduction in material cost and 71% reduction in assembly cost with the new adhesive bonding process, when compared to diffusion bonding for the recuperator investigated in this study. Adhesive compatibility with common refrigerants is reviewed through literature references, with no adverse compatibility issues noted. The findings of this research suggest a fairly quick path to commercialization for the new bonding method. Future studies required to pursue commercialization are liquid and gas permeability evaluations, and long term strength and performance testing of adhesives in targeted applications. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from Mar. 26, 2012 - Mar. 26, 2013
|
235 |
Gas-liquid flows in adsorbent microchannelsMoore, Bryce Kirk 10 January 2013 (has links)
A study of two the sequential displacement of gas and liquid phases in microchannels for eventual application in temperature swing adsorption (TSA) methane purification systems was performed. A model for bulk fluid displacement in 200 m channels was developed and validated using data from an air-water flow visualization study performed on glass microchannel test sections with a hydraulic diameter of 203 m. High-speed video recording was used to observe displacement samples at two separate channel locations for both the displacement of gas by liquid and liquid by gas, and for driving pressure gradients ranging from 19 to 450 kPa m-1. Interface velocities, void fractions, and film thicknesses were determined using image analysis software for each of the 63 sample videos obtained.
Coupled 2-D heat and mass transfer models were developed to simulate a TSA gas separation process in which impurities in the gas supply were removed through adsorption into adsorbent coated microchannel walls. These models were used to evaluate the impact of residual liquid films on system mass transfer during the adsorption process. It was determined that for a TSA methane purification system to be effective, it is necessary to purge liquid from the adsorbent channel. This intermediate purge phase will benefit the mass transfer performance of the adsorption system by removing significant amounts of residual liquid from the channel and by causing the onset of rivulet flow in the channel. The existence of the remaining dry wall area, which is characteristic of the rivulet flow regime, improves system mass transfer performance in the presence of residual liquid.
The commercial viability of microchannel TSA gas separation systems depends strongly on the ability to mitigate the presence and effects of residual liquid in the adsorbent channels. While the use of liquid heat transfer fluids in the microchannel structure provides rapid heating and cooling of the adsorbent mass, the management of residual liquid remains a significant hurdle. In addition, such systems will require reliable prevention of interaction between the adsorbent and the liquid heat transfer fluid, whether through the development and fabrication of highly selective polymer matrix materials or the use of non-interacting large-molecule liquid heat transfer fluids. If these hurdles can be successfully addressed, microchannel TSA systems may have the potential to become a competitive technology in large-scale gas separation.
|
236 |
Unsteady flow and heat transfer in periodic complex geometries for the transitional flow regimeChen, Li-Kwen, January 2008 (has links) (PDF)
Thesis (Ph. D.)--Missouri University of Science and Technology, 2008. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed May 12, 2008) Includes bibliographical references.
|
237 |
Superadiabatic combustion in counter-flow heat exchangersSchoegl, Ingmar Michael 22 March 2011 (has links)
Syngas, a combustible gaseous mixture of hydrogen, carbon monoxide, and other species, is a promising fuel for efficient energy conversion technologies. Syngas is produced by breaking down a primary fuel into a hydrogen-rich mixture in a process called fuel reforming. The motivation for the utilization of syngas rather than the primary fuel is that syngas can be used in energy conversion technologies that offer higher conversion efficiencies, e.g. gas turbines and fuel cells. One approach for syngas production is partial oxidation, which is an oxygen starved combustion process that does not require a catalyst. Efficient conversion to syngas occurs at high levels of oxygen depletion, resulting in mixtures that are not flammable in conventional combustion applications. In non-catalytic partial oxidation, internal heat recirculation is used to increase the local reaction temperatures by transferring heat from the product stream to pre-heat the fuel/air mixture before reactions occur, thus increasing reaction rates and allowing for combustion outside the conventional flammability limits. As peak temperatures lie above the adiabatic equilibrium temperature predicted by thermodynamic calculations, the combustion regime used for non-catalytic fuel reforming is referred to as 'superadiabatic'. Counter-flow heat exchange is an effective way to transfer heat between adjacent channels and is used for a novel, heat-recirculating fuel reformer design. An analytical study predicts that combustion zone locations inside adjacent flow channels adjust to operating conditions, thus stabilizing the process for independent variations of flow velocities and mixture compositions. In experiments, a reactor prototype with four channels with alternating flow directions is developed and investigated. Tests with methane/air and propane/air mixtures validate the operating principle, and measurements of the resulting syngas compositions verify the feasibility of the concept for practical fuel-reformer applications. Results from a two-dimensional numerical study with detailed reaction chemistry are consistent with experimental observations. Details of the reaction zone reveal that reactions are initiated in the vicinity of the channel walls, resulting in "tulip"-shaped reaction layers. Overall, results confirm the viability of the non-catalytic reactor design for fuel reforming applications. / text
|
238 |
Dynamic simulation of the Fast Flux Test Facility primary systemSands, Mark Richard January 1981 (has links)
No description available.
|
239 |
Energy conservation using a soil heat exchanger-storage system in a commercial type greenhouseBernier, Hervé, 1952- January 1987 (has links)
No description available.
|
240 |
CFD Modeling of Heat Recovery Steam Generator and its Components Using FluentVytla, Veera Venkata Sunil Kumar 01 January 2005 (has links)
Combined Cycle power plants have recently become a serious alternative for standard coal- and oil-fired power plants because of their high thermal efficiency, environmentally friendly operation, and short time to construct. The combined cycle plant is an integration of the gas turbine and the steam turbine, combining many of the advantages of both thermodynamic cycles using a single fuel. By recovering the heat energy in the gas turbine exhaust and using it to generate steam, the combined cycle leverages the conversion of the fuel energy at a very high efficiency. The heat recovery steam generator forms the backbone of combined cycle plants, providing the link between the gas turbine and the steam turbine. The design of HRSG has historically largely been completed using thermodynamic principles related to the steam path, without much regard to the gas-side of the system. An effort has been made using resources at both UK and Vogt Power International to use computational fluid dynamics (CFD) analysis of the gas-side flow path of the HRSG as an integral tool in the design process. This thesis focuses on how CFD analysis can be used to assess the impact of the gas-side flow on the HRSG performance and identify design modifications to improve the performance. An effort is also made to explore the software capabilities to make the simulation an efficient and accurate.
|
Page generated in 0.0634 seconds