• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 62
  • 32
  • 15
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 385
  • 385
  • 63
  • 55
  • 47
  • 43
  • 41
  • 38
  • 34
  • 34
  • 33
  • 32
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Energy retrofit of an oil refinery using pinch technology

Gillespie, Noel Edward 22 November 2016 (has links)
No description available.
272

Heat Flux Analysis of Deep Borehole Heat Exchangers

Randow, Jakob 11 February 2021 (has links)
In urban areas with limited space, deep borehole heat exchangers (DBHE) are coupled with ground source heat pump systems (GSHPS) to extract geothermal energy for building heating purposes. They can exploit more heat than common shallow systems. In this thesis, the open source software OpenGeoSys (OGS) has been utilized to analyse the long-term behavior and temperature evolution in and around single and multiple DBHEs. Moreover, an analysis to reduce the computation time has been applied. This way, the simulation time could be shortened by almost 75% by adjusting the tolerance of the non-linear solver and using an automatic time stepping in a first step. With larger element sizes, which still provide a sufficient result precision, the required duration could be shortened to less than 2% compared to the first method. Especially between the top and the bottom a layer size of 100 m is sufficient. The thickness around the top and bottom, however, should be small to avoid numerical inaccuracies. In the first years of operation most of the energy is extracted by the lower parts of the DBHE. Throughout the years, the contribution along the depth becomes more homogeneous and more soil is influenced. In summer, the top approximately 900 m are not contributing to the heat extraction but instead losing heat to the soil because of a low energy demand, which leads to high inflow temperatures. Considering the results of the in- and outflow temperature evolution, a single DBHE should be preferred over multiple systems. Nonetheless, those can multiply the extractable heat in a certain area and could be more economical.:List of Figures . . . v List of Tables . . . vii 1 Introduction . . . 1 2 Theoretical Background . . . 4 2.1 BHE equations . . . 5 2.2 Thermal Resistance . . . 6 2.3 Exchange Area . . . 10 2.4 Coefficient of Performance . . . 10 2.5 OpenGeoSys Pipe Network Feature . . . 12 3 Modeling Scenarios . . . 14 3.1 Model Setups . . . 15 3.2 Model Verification . . . 16 3.3 Model Environment . . . 20 3.4 Initial and Boundary Conditions . . . 22 3.5 Investigation on Computation Time Influences . . . 24 4 Results and Discussion . . . 30 4.1 In- and Outflow Temperature Evolution . . . 30 4.2 Energy Distribution . . . 34 4.3 Soil Heat Flux . . . 40 4.3.1 Winter in 2nd year . . . 41 4.3.2 Summer in 2nd year . . . 44 4.3.3 Winter in 30th year . . . 47 4.3.4 Summer in 30th year . . . 49 4.4 DBHE Heat Flux . . . 51 4.5 Soil Heat Flux in the Multiple DBHE Case . . . 55 4.5.1 Line Setup . . . 56 4.5.2 Square Setup . . . 61 4.6 Numerical Inaccuracies . . . 65 5 Conclusion . . . 68
273

KVANTIFIKACE PŘESNOSTI MĚŘENÍ TLAKOVÝCH ZTRÁT PŘI HODNOCENÍ PÓROVITOSTI HLINÍKOVÝCH ODLITKŮ / Quantification of measurement accuracy of the pressure losses at evaluation of aluminium casting porosity

Velehradský, Petr January 2008 (has links)
The diploma thesis deals with a matter of a leak testingo of the Schreiner devices in the company Kovolis Hedvikov a.s. The tested components are the heat exchangers made from alloy of aluminium used for automobiles. Due to the impact of porosity texture created during the components casting there is leaking. The analysis was accomplished to find out the most problematic parts of these components. Subsequently the testing and measuring were performed in order to classify the testing and detect its accuracy. The summary and suggested solutions of how to improve the accuracy of measuring of the aluminium components leaking are presented in the conclusion.
274

Konstrukční řešení teplosměnné plochy a její zanášení u výměníků z dutých plastových vláken / Heat transfer surfaces design and fouling of the heat exchangers from hollow plastic fibers

Bokišová, Lenka January 2012 (has links)
This thesis studies a possibility of using hollow fibres for construction of innovative heat exchangers. The first part introduces to the field of heat exchangers and polymers as materials suitable for formation of heat transfer surfaces. Further, the potential of hollow fibres of small diameters is outlined, including the merits, limits and proposals for improving. The significant part of the work is dedicated to the review of methods of fibres fixation and separation and review of fouling and cleaning of heat exchangers. Overviews of design possibilities which prevent fibres clustering have been made. The solutions, which are prepared for experimental research at Heat Transfer and Fluid Flow Laboratory are stated, including analysis of “curly” fibres application. The next part presents calculations for models of water – water and water – air heat exchangers and discusses influence of fibre diameter, flow velocity and the other parameters on heat characteristics. The heat transfer and fluid flow formulas using for heat exchangers of a bigger order can be employed with small changes. Furthermore, the influence of hollow fibres arrangement and distances on heat transfer is discussed.
275

Biofouling on plate heat exchangers and the impact of advanced oxidizing technology and ultrasound

Hjalmars, Anna January 2014 (has links)
Fouling in general and biofouling in specific is a problem concerning many industries. Biofouling occur in environments favorable for biological growth. As an example, industries using cooling water have problems with biofouling. The problem is apparent on heat exchangers as biofilm reduces the heat transfer and thus the performance. There are several different methods to reduce fouling on tube and shell heat exchanger on the market. However, for plate heat exchanger the alternatives are fewer. Generally, cleaning is performed by opening the heat exchanger and cleaning the plates one by one. This thesis aimed to present some of the biofouling reducing methods available on the market, and principally methods that could be applied on plate heat exchangers. Two of the methods were selected to be evaluated in experimentally; Advanced Oxidizing Technology (AOT) and ultrasound. The performances were evaluated by semi quantifying the amount of produced biofilm on plates of stainless steel, polystyrene and titanium. The plates were either reference plates, i.e. under no influence of some reducing method, or they were submerged in the tank when ultrasound or AOT were under operation. The test with ultrasound was performed once, whereas the test with AOT was performed twice. Ultrasound showed the best result; by reducing the amounts of produced biofilm from 68-100 % on all the plates, independent of the material used. AOT showed ambiguous results. From the first test it seemed to affect the production of biofilm, whereas in the second test it did not proof to have the same affect. / Påväxt i allmänhet och biologisk påväxt i synnerhet är ett problem som finns i många industrier/områden inom industrin. Biofilmstillväxt förekommer i miljöer gynnsam för biologisk tillväxt. Till exempel har industrier som använder kylvatten problem med biofilmstillväxt. På värmeväxlare visar sig problemet i form av sämre effektivitet genom försämrad värmeledningsförmåga. Det finns flera olika metoder för tillväxt att förhindra eller motverka tillväxt i tubvärmeväxlare. För plattvärmeväxlare är alternativen däremot färre. Generellt rengörs värmeväxlaren genom att denna öppnas och att plattorna rengörs en efter en. Syftet med detta examensarbete var att presentera några av de metoder som finns på marknaden för att minska och ta bort biologisktillväxt, och då främst metoder som går att använda på plattvärmeväxlare. Två av metoderna valdes ut och testades; Advanced Oxidizing Technology (AOT) och ultraljud. Metoderna utvärderades genom en semi- kvantitativ analys av mängd producerad biofilm på plattor gjorda av rostfritt stål, polystyren och titan. Dessa plattor var antingen referensplattor, det vill säga utan inverkan av någon reduceringsmetod, eller så var de nedsänkta i tankar fyllda med vatten där respektive metod hade verkat. Testet med ultraljud utfördes en gång, medan testet med AOT utfördes två gånger. Ultraljud visade sig vara bäst på att reducera biofilmstillväxt; med en reducering på 68 till 100 %. Oberoende av material minskade ultraljud tillväxten på samtliga plattor. AOT visade tvetydiga resultat; från det första testet tycktes det påverka produktionen av biofilm, medan den inte visade lika tydliga resultat i det andra testet.
276

Investigating 3-D Printed Polymer Heat Exchanger

January 2019 (has links)
abstract: Additive manufacturing, also known as 3-dimensional (3-d) printing, is now a rapidly growing manufacturing technique. Innovative and complex designs in various aspects of engineering have called for more efficient manufacturing techniques and 3-d printing has been a perfect choice in that direction. This research investigates the use of additive manufacturing in fabricating polymer heat exchangers and estimate their effectiveness as a heat transfer device. Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS) and Stereolithography (SLA) are the three 3-d printing techniques that are explored for their feasibility in manufacturing heat exchangers. The research also explores a triply periodic minimal structure–the gyroid, as a heat exchanger design. The performance of the gyroid heat exchanger was studied using experiments. The main parameters considered for the experiments were heat transfer rate, effectiveness and pressure drop. From the results obtained it can be inferred that using polymers in heat exchangers helps reducing corrosion and fouling problems, but it affects the effectiveness of the heat exchangers. For our design, the maximum effectiveness achieved was 0.1. The pressure drop for the heat exchanger was observed to decrease with an increase in flow rate and the maximum pressure drop measured was 0.88 psi for a flow rate of 5 LPM. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2019
277

Heat Transfer Analysis on the Applications to Heat Exchangers

Gundra, Raghu Lakshman, Medapati, Jagadeesh reddy January 2021 (has links)
A heat exchanger is a device used to transfer thermal energy between two or more fluids, at different temperatures in thermal contact. They are widely used in aerospace, chemical industries, power plants, refineries, HVAC refrigeration, and in many industries. The optimal design and efficient operation of the heat exchanger and heat transfer network plays an important role in industry in improving efficiencies and to reduce production cost and energy consumption. In this paper, significance of shape of inner pipe of double pipe heat exchanger was analyzed with respect to triangular, hexagonal and octagonal shaped inner pipes. The performance of double pipe heat exchangers was investigated with and without dent pattern using CFD analysis in ANSYS and efficient heat transfer results are identified from CFD outputs. On basis of literature review, few factors influencing the efficiency of heat exchanger and method to improve the efficiency are discussed.
278

Development of Oscillating Heat Pipe for Waste Heat Recovery

Mahajan, Govinda 09 December 2016 (has links)
The development and implementation of technologies that improves Heating Ventilation & Air Conditioning (HVAC) system efficiency, including unique waste heat recovery methods, are sought while considering financial constraints and benefits. Recent studies have found that through the use of advanced waste heat recovery systems, it is possible to reduce building’s energy consumption by 30%. Oscillating heat pipes (OHP) exists as a serpentine-arranged capillary tube, possesses a desirable aerodynamic form factor, and provides for relatively high heat transfer rates via cyclic evaporation and condensation of an encapsulated working fluid with no internal wicking structure required. In last two decade, it has been extensively investigated for its potential application in thermal management of electronic devices. This dissertation focuses on the application of OHP in waste heat recovery systems. To achieve the goal, first a feasibility study is conducted by experimentally assessing a nine turn copper-made bare tube OHP in a typical HVAC ducting system with adjacent air streams at different temperatures. Second, for a prescribed temperature difference and volumetric flow rate of air, a multi-row finned OHP based Heat Recovery Ventilator (OHP-HRV) is designed and analyzed for the task of pre-conditioning the intake air. Additionally, the energy and cost savings analysis is performed specifically for the designed OHP-HRV system and potential cost benefits are demonstrated for various geographical regions within the United States. Finally, an atypically long finned OHP is experimentally investigated (F-OHP) under above prescribed operating condition. Helical fins are added to capillary size OHP tubes at a rate of 12 fins per inch (12 FPI), thereby increasing the heat transfer area by 433%. The coupled effect of fins and oscillation on the thermal performance of F-OHP is examined. Also, F-OHP’s thermal performance is compared with that of bare tube OHP of similar dimension and operating under similar condition. It was determined that OHP can be an effective waste heat recovery device in terms of operational cost, manufacturability, thermal and aerodynamic performance. Moreover, it was also determined that OHP-HRV can significantly reduce energy consumption of a commercial building, especially in the winter operation.
279

teringsanalys av ett GeoFTX-system under vinterdriften

Johansson, Filip January 2022 (has links)
In winter it is common with frost formation in plate heat exchangers. During defrosting, the heat recovery efficiency decreases and the heat rate requirement for post-heating increases. One way to avoid frost formation is to preheat the ventilation air with geothermal energy, a so-called GeoMVHR system. This study examines the profitability of eliminating the requirement for post-heating using geothermal energy to preheat the incoming ventilation air. The study evaluates the profitability for two locations in Sweden, Stockholm and Gothenburg. The method used is the internal rate of return. The heat rate requirement for post-heating in an MVHR system without geothermal outdoor preheating and the power for operating a GeoMVHR system that eliminates the requirement for post-heating is calculated. The internal rate of return was 5.7% for Gothenburg and 5.3% for Stockholm. The conclusion was that the GeoMVHR systems could be seen as a profitable investment.
280

Thermomechanical analysis of geothermal heat exchange systems

Wang, Tengxiang January 2023 (has links)
Heating and cooling needs have been highly demanded as the extreme weathers become increasingly frequent and global warming becomes well-founded. Because ground temperature keeps relatively constant at 20-30 feet below the surface, using the earth as a thermal mass for temperature conditioning and thermal management creates an energy-efficient and environmentally beneficial approach to surface heating and cooling, which has been used in self-heated pavement, greenhouse, and building integrated photovoltaic thermal systems. Inspired by the human body wherein a blood circulation system keeps skin nearly at a constant temperature under environmental changes, a thermal fluid circulation system is introduced to the geothermal well system. Through bi-directional heat exchange between surface space with the ground, heat harvested at high temperatures can be stored underground for utilization at low temperatures, so that the surface temperature variations can be significantly reduced for daily and yearly cycles minimizing the heating/cooling needs. Understanding the heat transfer under the ground and thermal stress of the heat exchange systems induced by the temperature changes is critical for system design, performance prediction and optimization, and system control and operation. This dissertation studies heat transfer and thermomechanical problems for different geothermal systems. The temperature field of the earth can be calculated given the heat source and ambient temperature. Due to nonuniform thermal expansion caused by temperature differences or material mismatches, thermal stress will be induced. Its interaction with surface mechanical load and displacement constraint will be investigated for the design and failure analysis of the fluid circulation and heat exchange system. In the theoretical study, the earth is approximated as a semi-infinite domain. Green's function technique has been used in the analysis of heat conduction, elastic, and thermoelastic problems respectively. The semi-infinite domain with a surface boundary condition can be considered a special case of two semi-infinite domains with a perfectly bonded interface, which forms an infinite bi-material domain. For a Dirichlet boundary value problem with a constant temperature or displacement, the top semi-infinite domain can be considered with infinitely large conductivity or stiffness, respectively; for a Neumann boundary value problem with zero flux or traction, the top semi-infinite domain can be considered with a zero conductivity or stiffness, respectively. The general Green's functions of an infinite bi-material domain can recover the classic solutions for Boussinesq's problem, Mindlin's problem, Kelvin's problem, etc. The three-dimensional (3D) problems can be used to recover the corresponding two-dimensional (2D) problems by an integral of Green's function in one dimension through the Hadamard regularization. Firstly, the heat transfer problem in an infinite bi-material is introduced and the Green's function is formulated for the temperature change caused by a point heat source in the material. It is used to simulate heat transfer for a spherical heat exchanger embedded underground in geothermal energy applications. The temperature field of the spherical inhomogeneity embedded in an infinite bi-material subjected to a uniform far-field steady-state or sinusoidal heat flux is determined by solving the boundary value problem. Eshelby’s equivalent inclusion method (EIM) is used to consider the mismatch of the thermal conductivities of the particle from the matrix, which is simulated by a prescribed temperature gradient. When the material of one semi-infinite domain exhibits zero or infinite thermal conductivity, the above solution can be used for a semi-infinite domain containing a heat source with heat insulation or constant temperature on the boundary, respectively. The analytical solution has been verified with the finite element method. The formulation is used to simulate a spherical heat source embedded in a semi-infinite domain. The method can be immediately applied to the design of geothermal energy systems for heat storage and harvesting. When the heat exchanger is a long horizontal pipe, a similar procedure can be conducted for the corresponding 2D problem. If the temperature exhibits a cyclic change, such as daily variation, the formulation is extended to the harmonic transient heat conduction problems. Secondly, a similar formulation has been introduced for the elastic problem of an infinite bi-material. The Green's function is formulated for the displacement caused by a point force in the bi-material. It is used to simulate the stress transfer for a spherical heat exchanger embedded underground in geothermal energy applications. The formulation of the heat transfer problem is extended to the corresponding elastic problem. How a surface mechanical load is transferred to the underground heat exchanger is illustrated. The interactions between a heat exchanger and the surface load are investigated. Finally, the thermoelastic problem of an infinite bi-material is introduced and the Green's function is formulated for the displacement field caused by a point heat source in the material. It can be straightforwardly used to derive the thermoelastic stress caused by a distributed heat source by volume integrals. However, when the thermal conductivity and elasticity of the heat exchanger are different from the earth in actual geothermal energy applications, the Green's function cannot be directly used. By analogy to Eshelby's equivalent inclusion method, a dual equivalent inclusion method (DEIM) is introduced to address the dual material mismatch in thermal and elastic properties. The fundamental solutions of a bi-material for thermal, elastic, and thermoelastic problems are versatile and recover the ones of the single material domain for both 2D and 3D problems. The equivalent inclusion method is successfully extended to the thermoelastic problems to simulate the material mismatch. The formulation can be used in designing a geothermal heat exchanger for heat storage and supply for energy-efficient buildings as well as other geothermal applications. Future work will extend the fundamental solutions to time-dependent thermomechanical load and investigate the daily and seasonal heat exchange with the ground using different configurations of the pipelines. The algorithms will be integrated into the inclusion-based boundary element method (iBEM) for geothermal system design and analysis.

Page generated in 0.0828 seconds