• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heat of Fusion, Crystallization Kinetics Analyses and Morphology of Poly[(ethylene)-co-(trimethylene terephthalate)]s

Wang, Chuan-Liang 01 July 2003 (has links)
These developmental grade samples were supplied by the Union Chemical Laboratories of Industrial Technology Research Institute(ITRI). The compositions of a series of copolyesters were identified by C1-NMR and H1-NMR. The ethylene terephthalate(ET) units are 8.9¡B33.7¡B37.9% and trimethylene terephthalate(PT) units are 91.1¡B66.3¡B62.1% in the copolyesters with sample codes of C2¡BC3¡BC4. Differential scanning calorimeter(DSC) was used to study the isothermal crystallization kinetics and melting behaviors and Polarizing Microscope(PLM) was used to study the spherulite growth rates and spherulite patterns. The Hoffman-Weeks linear plot and M-X nonlinear plot gave an equilibrium meiting temperature(Tmo ) oC of C2¡BC3¡BC4 are (240.6¡B275.5)¡B(208.8¡B247.0)¡B(194.3¡B229.4). The growth rates (£gm/s )of different samples in the different crystallination temperature(Tc) oC are C2(0.614~0.061, 180~207)¡BC3(0.112~0.021, 130~166)¡BC4(0.0213~0.003, 120~160). From the different equilibrium meiting temperature(Tmo ) and different T¡Û = ( Tg-30, Tg-51.6 oC) to analysis the regime transition temperature (T¢º¡÷¢») in units of oC are C2(234.0¡B237.1¡B240.6¡B275.5¡A195.9¡Ó0.3, 196.2¡Ó0.4)¡BC3(193.1¡B198.9¡B208.8¡B247.0¡A147.5¡Ó0.2, 147.5¡Ó0.1)¡BC4(184.1¡B187.9¡B194.3¡B229.4¡A133.3¡Ó0.4, 133.6¡Ó0.2). Compare the results with the results that using the half-time of crystallization(t1/2) from DSC (C2(193.6 oC)¡BC3(147.3 oC)¡BC4(1140.4 oC)). It can find that C2 is over 2.3 and 2.6 oC and C3 is the same and C4 is under 6.8 and 7.1 oC. From the morphology of spherulite patterns and regime transition temperature (T¢º¡÷¢») oC, the results indicated that the change from the morphology is closed to regime transition temperature. Regular spherlites were exhibited at temperature(Tc) between 180 and 196 oC and banded spherulites were observed between 197 and 208 oC in the C2. The band spacing increase with increasing crystallization temperature. Regular spherlites were exhibited at temperature(Tc) between 130 and 147 oC and banded spherulites were observed between 148 and 172 oC in the C3. The band spacing increase with increasing crystallization temperature. Regular spherlites were exhibited at temperature(Tc) between 120 and 134 oC and banded spherulites were observed between 135 and 160 oC in the C4. The band spacing increase with increasing crystallization temperature. Combine the results of M-X plot and spherulites pattern and melting behaviors at a heating rate of 80 oC/min . It indicated that the regime transition temperature (T¢¹¡÷¢º) oC are in the range of crystallization temperature of C2¡BC3¡BC4 are (210~213¡B174~178¡B160~164 oC). The heat of fusion (¡µHu) of C3 is 4.88¡Ó0.06 kcal/mol and B is 1.47¡Ó0.05 cal/c.c from the experimental. The heat of fusion(¡µHu) of C4 is 2.56¡Ó0.22 kcal/mol and B is 4.45¡Ó0.36 cal/c.c from the experimental. Compare the results with PET(¡µHu = 5.6 kcal/mol) and PTT(¡µHu = 7.2 kcal/mol). It indicated that PTT > PET > C3 > C4.
2

Heat of Fusion, Isothermal Crystallization Kinetics and Morphology of Poly(ethylene-co-trimethylene terephthalate) Copolyesters

Chang, Chih-wei 13 July 2004 (has links)
The crystallization kinetics and the melting behavior of a random copolyester with equal amounts of ethylene- and trimethylene- terephthalate units were studied by using a modulated differential scanning calorimeter in both conventional mode (DSC) and modulated mode (TMDSC). Polarizing light microscope (PLM) was used to study the spherulite growth rates and spherulite patterns. Isothermal crystallization was performed at temperatures (TC) between 115 and 142¢J. The Avrami exponents, n1, were found to increase from 3.00 to 3.22 with an increasing TC. At the highest TC, it should be a sporadic nucleation with spherical growth, i.e. n1 = 4. The value of n1 less than 4 and the slow rate of crystallization indicate that both primary and secondary crystallization occurs in parallel rather than in series. Triple- and double- melting peaks were observed for the melting behavior of DSC at 10¢J/min and of TMDSC at 2¢J/min. The results of WAXD, DSC and TMDSC indicate the coexistence of two melting mechanisms, i.e., dual morphologies and the recrystallization process. The Hoffman-Weeks plot gave an equilibrium melting temperature of 176.6¢J from the reversing curves of TMDSC. In this study, the regime II¡÷III transition temperature can be estimated from the inverse of the half-time of crystallization as overall growth rate and the growth rate. Meanwhile, a clear change in morphology from negative regular to banded spherulites was also observed around 132¢J by using PLM. The heat of fusion of polymer is customarily evaluated through the melting point depression measurements with the thermodynamic melting points. Application of the Flory equation to the PET/PTT random copolyesters diluted with di-n-butyl phthalate gave the values of the heat of fusion to be 4.48, 3.43 and 3.07 kcal/mole, respectively, for the random copolyesters containing 28, 38 and 50 mole % of ethylene terephthalate unit. The corresponded values of the interaction energy of mixing at infinite dilution were 3.90, 2.85 and 2.75 cal/cc.
3

Rozložení tepelných toků na stěnu tokamaku způsobených okrajovými nestabilitami / Rozložení tepelných toků na stěnu tokamaku způsobených okrajovými nestabilitami

Kripner, Lukáš January 2016 (has links)
Edge localized modes (ELMs) are a concern for future magnetic fusion devices, such as ITER, due to the large transient heat loads they generate on the plasma facing components. A very promising method of ELM suppression is an application of resonant magnetic perturbations (RMP); however, such application leads to localized places of higher heat fluxes called footprints. Both ELMs and RMP could limit the operational lifetime of the device. In this thesis, we analyze the temporal and spatial distribution of footprints using the tangle distance method in the aim to prevent a transient overheating. We also analyze quasi-double-null configuration of the ITER plasma which can be expected to be the most susceptible to overheating of the upper wall. Based on the modelling, the potentially dangerous configurations of the RMP have been shown. Using the ELM filament model included in the LOCUST GPU code, we study temporal and spatial distribution of the heat fluxes caused by ELMs in the axially symmetric and the asymmetric magnetic field. The results are compared with published experimental observations. Powered by TCPDF (www.tcpdf.org)
4

Morphology, Crystallization and Melting Behavior of Propylene-Ethylene Statistical Copolymers

Uan-Zo-li, Julie Tammy 25 October 2005 (has links)
In this work the morphology, crystallization and melting behavior of novel Dow Chemical propylene-ethylene copolymers were investigated. The incorporation of ethylene units into a polypropylene chain resulted in the decrease in crystallization, melting and glass transition temperatures and overall crystallinity. Based on the shape of heat capacity curves and the dependence of the melting temperature offset on ethylene content, it was concluded that copolymers prepared using different catalyst systems exhibited different ethylene sequence length distributions. The behavior of Dow Chemical propylene-ethylene copolymers was compared to that of copolymers prepared using traditional metallocene and Ziegler-Natta catalysts. The catalyst system used in the preparation of these new copolymers is similar to a metallocene catalyst system. It was demonstrated that ethylene defects are partially included in the polypropylene crystal. The thermodynamic heat of fusion at the equilibrium melting temperature decreased by 44% with an increase in ethylene concentration from 0 mol% to 21.2 mol%. On the basis of calorimetric and density data, the inclusion model based on the Sanchez-Eby crystallization theory was shown to be applicable for the evaluation of the degree of crystallinity. At the same time, inadequacies were found in application of the rigid amorphous fraction model to these copolymers. The formation of gamma-phase crystals was shown to be favored by both an increase in the ethylene content and a decrease in the crystallization rate. Increase in the ethylene content was shown to lead to a decrease in the density, length and thickness of alpha-phase crystals. It was also demonstrated that the cross-hatching morphology is present in all propylene-ethylene copolymers. / Ph. D.
5

High-Capacity Cool Thermal Energy Storage for Peak Shaving - a Solution for Energy Challenges in the 21st century

He, Bo January 2004 (has links)
Due to climatic change, increasing thermal loads inbuildings and rising living standards, comfort cooling inbuildings is becoming increasingly important and the demand forcomfort cooling is expanding very quickly around the world. Theincreased cooling demand results in a peak in electrical powerdemand during the hottest summer hours. This peak presents newchallenges and uncertainties to electricity utilities and theircustomers. Cool thermal storage systems have not only the potential tobecome one of the primary solutions to the electrical powerimbalance between production and demand, but also shift coolingenergy use to off-peak periods and avoid peak demand charges.It increases the possibilities of utilizing renewable energysources and waste heat for cooling generation. In addition, acool storage can actually increase the efficiency of combinedheat and power (CHP) generation provided that heat drivencooling is coupled to CHP. Then, the cool storage may avoidpeaks in the heat demand for cooling generation, and this meansthat the CHP can operate at design conditions in most oftime. Phase Change Materials (PCMs) used for cool storage hasobtained considerable attention, since they can be designed tomelt and freeze at a selected temperature and have shown apromising ability to reduce the size of storage systemscompared with a sensible heat storage system because they usethe latent heat of the storage medium for thermal energystorage. The goal of this thesis is to define suitable PCM candidatesfor comfort cooling storage. The thesis work combines differentmethods to determine the thermophysical properties oftetradecane, hexadecane and their binary mixtures, anddemonstrates the potential of using these materials as PCM forcomfort cooling storage. The phase equilibrium of the binarysystem has been studied theoretically as well asexperimentally, resulting in the derivation of the phasediagram. With knowledge of the liquid-solid phase equilibriumcharacteristics and the phase diagram, an improvedunderstanding is provided for the interrelationships involvedin the phase change of the studied materials. It has beenindicated that except for the minimum-melting point mixture,all mixtures melt and freeze within a temperature range and notat a constant temperature, which is so far often assumed in PCMstorage design. In addition, the enthalpy change during thephase transition (heat of fusion) corresponds to the phasechange temperature range; thus, the storage density obtaineddepends on how large a part of the phase change temperaturerange is valid for a given application. Differential Scanning Calorimetery (DSC) is one frequentlyused method in the development of PCMs. In this thesis, it hasbeen found that varying results are obtained depending on theDSC settings throughout the measurements. When the DSC runs ata high heating/cooling rate it will lead to erroneousinformation. Also, the correct phase transition temperaturerange cannot be obtained simply from DSC measurement. Combiningphase equilibrium considerations with DSC measurements gives areliable design method that incorporates both the heat offusion and the phase change temperature range. The potential of PCM storage for peak shaving in differentcooling systems has been demonstrated. A Computer model hasbeen developed for rapid phase equilibrium calculation. The useof phase equilibrium data in the design of a cool storagesystem is presented as a general methodology. Keywords:Comfort cooling, peak shaving, PCM, coolthermal storage system, DSC, phase change temperature range,the heat of fusion, phase equilibrium, phase diagram. Language:English
6

High-Capacity Cool Thermal Energy Storage for Peak Shaving - a Solution for Energy Challenges in the 21st century

He, Bo January 2004 (has links)
<p>Due to climatic change, increasing thermal loads inbuildings and rising living standards, comfort cooling inbuildings is becoming increasingly important and the demand forcomfort cooling is expanding very quickly around the world. Theincreased cooling demand results in a peak in electrical powerdemand during the hottest summer hours. This peak presents newchallenges and uncertainties to electricity utilities and theircustomers.</p><p>Cool thermal storage systems have not only the potential tobecome one of the primary solutions to the electrical powerimbalance between production and demand, but also shift coolingenergy use to off-peak periods and avoid peak demand charges.It increases the possibilities of utilizing renewable energysources and waste heat for cooling generation. In addition, acool storage can actually increase the efficiency of combinedheat and power (CHP) generation provided that heat drivencooling is coupled to CHP. Then, the cool storage may avoidpeaks in the heat demand for cooling generation, and this meansthat the CHP can operate at design conditions in most oftime.</p><p>Phase Change Materials (PCMs) used for cool storage hasobtained considerable attention, since they can be designed tomelt and freeze at a selected temperature and have shown apromising ability to reduce the size of storage systemscompared with a sensible heat storage system because they usethe latent heat of the storage medium for thermal energystorage.</p><p>The goal of this thesis is to define suitable PCM candidatesfor comfort cooling storage. The thesis work combines differentmethods to determine the thermophysical properties oftetradecane, hexadecane and their binary mixtures, anddemonstrates the potential of using these materials as PCM forcomfort cooling storage. The phase equilibrium of the binarysystem has been studied theoretically as well asexperimentally, resulting in the derivation of the phasediagram. With knowledge of the liquid-solid phase equilibriumcharacteristics and the phase diagram, an improvedunderstanding is provided for the interrelationships involvedin the phase change of the studied materials. It has beenindicated that except for the minimum-melting point mixture,all mixtures melt and freeze within a temperature range and notat a constant temperature, which is so far often assumed in PCMstorage design. In addition, the enthalpy change during thephase transition (heat of fusion) corresponds to the phasechange temperature range; thus, the storage density obtaineddepends on how large a part of the phase change temperaturerange is valid for a given application.</p><p>Differential Scanning Calorimetery (DSC) is one frequentlyused method in the development of PCMs. In this thesis, it hasbeen found that varying results are obtained depending on theDSC settings throughout the measurements. When the DSC runs ata high heating/cooling rate it will lead to erroneousinformation. Also, the correct phase transition temperaturerange cannot be obtained simply from DSC measurement. Combiningphase equilibrium considerations with DSC measurements gives areliable design method that incorporates both the heat offusion and the phase change temperature range.</p><p>The potential of PCM storage for peak shaving in differentcooling systems has been demonstrated. A Computer model hasbeen developed for rapid phase equilibrium calculation. The useof phase equilibrium data in the design of a cool storagesystem is presented as a general methodology.</p><p><b>Keywords:</b>Comfort cooling, peak shaving, PCM, coolthermal storage system, DSC, phase change temperature range,the heat of fusion, phase equilibrium, phase diagram. Language:English</p>

Page generated in 0.0596 seconds