• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strategies for Managing Cool Thermal Energy Storage with Day-ahead PV and Building Load Forecasting at a District Level

Alfadda, Abdullah Ibrahim A. 09 September 2019 (has links)
In hot climate areas, the electrical load in a building spikes, but not by the same amount daily due to various conditions. In order to cover the hottest day of the year, large cooling systems are installed, but are not fully utilized during all hot summer days. As a result, the investments in these cooling systems cannot be fully justified. A solution for more optimal use of the building cooling system is presented in this dissertation using Cool Thermal Energy Storage (CTES) deployed at a district level. Such CTES systems are charged overnight and the cool charge is dispatched as cool air during the day. The integration of the CTES helps to downsize the otherwise large cooling systems designed for the hottest day of the year. This reduces the capital costs of installing large cooling systems. However, one important question remains - how much of the CTES should be charged during the night, such that the cooling load for the next day is fully met and at the same time the CTES charge is fully utilized during the day. The solution presented in this dissertation integrated the CTES with Photovoltaics (PV) power forecasting and building load forecasting at a district level for a more optimal charge/discharge management. A district comprises several buildings of different load profiles, all connected to the same cooling system with central CTES. The use of forecasting for both the PV and the building cooling load allows the building operator to more accurately determine how much of the CTES should be charged during the night, such that the cooling system and CTES can meet the cooling demand for the next day. Using this approach, the CTES would be optimally sized, and utilized more efficiently during the day. At the same time, peak load savings are achieved, thus benefiting an electric utility company. The district presented in this dissertation comprises PV panels and three types of buildings – a mosque, a clinic and an office building. In order to have a good estimation for the required CTES charge for the next day, reliable forecasts for the PV panel outputs and the electrical load of the three buildings are required. In the model developed for the current work, dust was introduced as a new input feature in all of the forecasting models to improve the models' accuracy. Dust levels play an important role in PV output forecasts in areas with high and variable dust values. The overall solution used both the PV panel forecasts and the building load forecasts to estimate the CTES charge for the next day. The presented method was tested against the baseline method with no forecasting system. Multiple scenarios were conducted with different cooling system sizes and different CTES capacities. Research findings indicated that the presented method utilized the CTES charge more efficiently than the baseline method. This led to more savings in the energy consumption at the district level. / Doctor of Philosophy / In hot weather areas around the world, the electrical load in a building spikes because of the cooling load, but not by the same amount daily due to various conditions. In order to meet the demand of the hottest day of the year, large cooling systems are installed. However, these large systems are not fully utilized during all hot summer days. As a result, the investments in these cooling systems cannot be fully justified. A solution for more optimal use of the building cooling system is presented in this dissertation using Cool Thermal Energy Storage (CTES) deployed at a district level. Such CTES systems are charged overnight and the cool charge is dispatched as cool air during the day. The integration of the CTES helps to downsize the otherwise large cooling systems designed for the hottest day of the year. This reduces the capital costs of installing large cooling systems. However, one important question remains - how much of the CTES should be charged during the night, such that the cooling load for the next day is fully met and at the same time the CTES charge is fully utilized during the day. The solution presented in this dissertation integrated the CTES with Photovoltaics (PV) power forecasting and building load forecasting at a district level for a more optimal charge/discharge management. A district comprises several buildings all connected to the same cooling system with central CTES. The use of the forecasting for both the PV and the building cooling load allows the building operator to more accurately determine how much of the CTES should be charged during the night, such that the cooling system and CTES can meet the cooling demand for the next day. Using this approach, the CTES would be optimally sized and utilized more efficiently. At the same time, peak load is lowered, thus benefiting an electric utility company.
2

Economic and Environmental Analysis of Cool Thermal Energy Storage as an Alternative to Batteries for the Integration of Intermittent Renewable Energy Sources

Anderson, Matthew John 17 January 2015 (has links)
The balance of the supply of renewable energy sources with electricity demand will become increasingly difficult with further penetration of renewable energy sources. Traditionally, large stationary batteries have been used to store renewable energy in excess of electricity demand and dispatch the stored energy to meet future electricity demand. Cool thermal energy storage is a feasible renewable energy balancing solution that has economic and environmental advantages over utility scale stationary lead-acid batteries. Two technologies, ice harvesters and internal-melt ice-on-coil cool thermal energy storage, have the capability to store excess renewable energy and use the energy to displace electricity used for building cooling systems. When implemented by a utility, cool thermal energy storage can replace large utility scale batteries for renewable energy balancing in utility regions with high renewable energy penetration. The California Independent System Operator (CAISO) region and the Electric Reliability Council of Texas (ERCOT) are utility regions with large solar and wind resources, respectively, that can benefit from installation of cool thermal energy storage systems for renewable energy balancing. With proper scheduling of energy dispatched from cool thermal energy storage, these technologies can be effective in displacing peak power capacity for the region, in displacing traditional building cooling equipment, and in recovering renewable energy that would otherwise be curtailed. / Master of Science
3

High-Capacity Cool Thermal Energy Storage for Peak Shaving - a Solution for Energy Challenges in the 21st century

He, Bo January 2004 (has links)
Due to climatic change, increasing thermal loads inbuildings and rising living standards, comfort cooling inbuildings is becoming increasingly important and the demand forcomfort cooling is expanding very quickly around the world. Theincreased cooling demand results in a peak in electrical powerdemand during the hottest summer hours. This peak presents newchallenges and uncertainties to electricity utilities and theircustomers. Cool thermal storage systems have not only the potential tobecome one of the primary solutions to the electrical powerimbalance between production and demand, but also shift coolingenergy use to off-peak periods and avoid peak demand charges.It increases the possibilities of utilizing renewable energysources and waste heat for cooling generation. In addition, acool storage can actually increase the efficiency of combinedheat and power (CHP) generation provided that heat drivencooling is coupled to CHP. Then, the cool storage may avoidpeaks in the heat demand for cooling generation, and this meansthat the CHP can operate at design conditions in most oftime. Phase Change Materials (PCMs) used for cool storage hasobtained considerable attention, since they can be designed tomelt and freeze at a selected temperature and have shown apromising ability to reduce the size of storage systemscompared with a sensible heat storage system because they usethe latent heat of the storage medium for thermal energystorage. The goal of this thesis is to define suitable PCM candidatesfor comfort cooling storage. The thesis work combines differentmethods to determine the thermophysical properties oftetradecane, hexadecane and their binary mixtures, anddemonstrates the potential of using these materials as PCM forcomfort cooling storage. The phase equilibrium of the binarysystem has been studied theoretically as well asexperimentally, resulting in the derivation of the phasediagram. With knowledge of the liquid-solid phase equilibriumcharacteristics and the phase diagram, an improvedunderstanding is provided for the interrelationships involvedin the phase change of the studied materials. It has beenindicated that except for the minimum-melting point mixture,all mixtures melt and freeze within a temperature range and notat a constant temperature, which is so far often assumed in PCMstorage design. In addition, the enthalpy change during thephase transition (heat of fusion) corresponds to the phasechange temperature range; thus, the storage density obtaineddepends on how large a part of the phase change temperaturerange is valid for a given application. Differential Scanning Calorimetery (DSC) is one frequentlyused method in the development of PCMs. In this thesis, it hasbeen found that varying results are obtained depending on theDSC settings throughout the measurements. When the DSC runs ata high heating/cooling rate it will lead to erroneousinformation. Also, the correct phase transition temperaturerange cannot be obtained simply from DSC measurement. Combiningphase equilibrium considerations with DSC measurements gives areliable design method that incorporates both the heat offusion and the phase change temperature range. The potential of PCM storage for peak shaving in differentcooling systems has been demonstrated. A Computer model hasbeen developed for rapid phase equilibrium calculation. The useof phase equilibrium data in the design of a cool storagesystem is presented as a general methodology. Keywords:Comfort cooling, peak shaving, PCM, coolthermal storage system, DSC, phase change temperature range,the heat of fusion, phase equilibrium, phase diagram. Language:English
4

High-Capacity Cool Thermal Energy Storage for Peak Shaving - a Solution for Energy Challenges in the 21st century

He, Bo January 2004 (has links)
<p>Due to climatic change, increasing thermal loads inbuildings and rising living standards, comfort cooling inbuildings is becoming increasingly important and the demand forcomfort cooling is expanding very quickly around the world. Theincreased cooling demand results in a peak in electrical powerdemand during the hottest summer hours. This peak presents newchallenges and uncertainties to electricity utilities and theircustomers.</p><p>Cool thermal storage systems have not only the potential tobecome one of the primary solutions to the electrical powerimbalance between production and demand, but also shift coolingenergy use to off-peak periods and avoid peak demand charges.It increases the possibilities of utilizing renewable energysources and waste heat for cooling generation. In addition, acool storage can actually increase the efficiency of combinedheat and power (CHP) generation provided that heat drivencooling is coupled to CHP. Then, the cool storage may avoidpeaks in the heat demand for cooling generation, and this meansthat the CHP can operate at design conditions in most oftime.</p><p>Phase Change Materials (PCMs) used for cool storage hasobtained considerable attention, since they can be designed tomelt and freeze at a selected temperature and have shown apromising ability to reduce the size of storage systemscompared with a sensible heat storage system because they usethe latent heat of the storage medium for thermal energystorage.</p><p>The goal of this thesis is to define suitable PCM candidatesfor comfort cooling storage. The thesis work combines differentmethods to determine the thermophysical properties oftetradecane, hexadecane and their binary mixtures, anddemonstrates the potential of using these materials as PCM forcomfort cooling storage. The phase equilibrium of the binarysystem has been studied theoretically as well asexperimentally, resulting in the derivation of the phasediagram. With knowledge of the liquid-solid phase equilibriumcharacteristics and the phase diagram, an improvedunderstanding is provided for the interrelationships involvedin the phase change of the studied materials. It has beenindicated that except for the minimum-melting point mixture,all mixtures melt and freeze within a temperature range and notat a constant temperature, which is so far often assumed in PCMstorage design. In addition, the enthalpy change during thephase transition (heat of fusion) corresponds to the phasechange temperature range; thus, the storage density obtaineddepends on how large a part of the phase change temperaturerange is valid for a given application.</p><p>Differential Scanning Calorimetery (DSC) is one frequentlyused method in the development of PCMs. In this thesis, it hasbeen found that varying results are obtained depending on theDSC settings throughout the measurements. When the DSC runs ata high heating/cooling rate it will lead to erroneousinformation. Also, the correct phase transition temperaturerange cannot be obtained simply from DSC measurement. Combiningphase equilibrium considerations with DSC measurements gives areliable design method that incorporates both the heat offusion and the phase change temperature range.</p><p>The potential of PCM storage for peak shaving in differentcooling systems has been demonstrated. A Computer model hasbeen developed for rapid phase equilibrium calculation. The useof phase equilibrium data in the design of a cool storagesystem is presented as a general methodology.</p><p><b>Keywords:</b>Comfort cooling, peak shaving, PCM, coolthermal storage system, DSC, phase change temperature range,the heat of fusion, phase equilibrium, phase diagram. Language:English</p>
5

Load Shifting and Storage of Cooling Energy through Ice Bank or Ice Slurry Systems : modelling and experimental analysis

Grozdek, Marino January 2009 (has links)
Ice based Cool Thermal Energy Storage (CTES) systems have attracted much attention during last few decades. The reasons are mainly of economical and environmental nature. Compared to conventional refrigeration and air-conditioning systems without cool thermal energy storage, implementation of CTES will increase environmental standards and overall efficiency of the energy systems as it contributes to the phase-out of synthetic refrigerants and reduces peak loads in electricity grids. For the application of a cool thermal energy storages in refrigeration installations and HVAC systems in industry and building sector, it is necessary to have appropriate design tools in order to sufficiently accurate predict their performance. In this thesis theoretical and experimental investigations of two ice based cool thermal energy storage systems, namely static, indirect, external melt, ice-on-coil, i.e. ice bank system and dynamic, ice slurry cool thermal energy storage system are carried out. An ice bank storage technology for cooling purposes is known for a long time. The main drawbacks which are hindering its wider use are the system complexity, high first costs, system efficiency which is highly dependant on design, control and monitoring of the system, etc. On the other hand, ice slurry technology was not well studied until recently, while in the current scientific literature there are still differences between results and conclusions reported by different investigators. The aim of the present thesis is to extend the knowledge in the field of ice based CTES systems, thereby contributing in the development and wider utilization of those systems. In the first part of the thesis a computer application, named “BankaLeda” is presented. It enables simulation of an ice bank system performance. In order to verify developed simulation model an experimental evaluation has been performed. Field measurements have been conducted on a two module silo which was installed as a part of the refrigeration system in dairy and cheese factory “Antun Bohnec” in the city of Ludbreg in Croatia. Experimental findings were compared to the simulation model. The software „BankaLeda“ presents a strong optimization tool for designers and engineers in the field by providing a high degree of freedom in defining particular system design and operating parameters. It offers a basis for assessment and testing of a new energy efficient system arrangements and measures. Besides it will give decisionmakers the ability to test potential solutions in the process of CTES system design. In the second part of the thesis ice slurry pressure drop and heat transfer in horizontal straight tubes have been experimentally investigated. In particular a mixture of 10.3 % of ethanol and water with an initial freezing point of -4.4 °C was considered. It was found that the behaviour of ice slurry flow is changing with time and that ice slurry pressure drop is generally higher than for single phase flow. However for ice concentrations of 15 % and higher, for certain velocities ice slurry pressure drop is found to be of a similar value as for single phase fluid. Moreover, if ice slurry is to be used as a energy transport media it is recommended to keep the ice mass fraction at a level of 20 %. With tube geometry and thermophysical properties of a carrier fluid the heat transfer of ice slurry is generally a function of ice mass fraction and velocity. The imposed heat flux has no or has just minor influence on the heat transfer coefficient. Up to ice mass fraction between 10-15 % the mean heat transfer coefficient shows only slight (laminar flow) or no increase (turbulent flow) in comparison to single phase flow. Beyond that ice mass fraction the heat transfer coefficient is increasing significantly. The test data for pressure drop and heat transfer in laminar and turbulent regime was compared to several correlations from the literature. A new correlations for ice slurry pressure drop and heat transfer in the laminar flow regime, for 10.3 % ethanol and water mixture, were derived based on the present experimental data. The correlation for pressure drop predicts 82 % of the experimental data with ±15 % accuracy, while the correlation for heat transfer predicts 75 % of the data with the same accuracy. In order to investigate advantages and disadvantages of a dynamic, ice slurry system over a static, indirect, external melt, ice-on-coil CTES system and to assess their differences from economical aspects, a theoretical simulation model of an ice slurry CTES have been developed. It was found that the ice slurry based CTES systems posses higher economic and energy saving potential than static type systems. In the best case scenario the total energy consumption of dynamic CTES system was found to be approximately 25 % lower than for a static CTES system. / QC 20100715

Page generated in 0.1077 seconds