• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 14
  • 12
  • 9
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 183
  • 183
  • 53
  • 40
  • 27
  • 20
  • 19
  • 18
  • 16
  • 16
  • 13
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Prestandaförändringen hos en bergvärmeanläggning efter fem års drifttid

Riml, Joakim January 2005 (has links)
The aim of this report was to do a case study at a geothermal heating system which has been in operation for about 5 years, and study if its performance has changed during this period of time. A literature study about the processes involved was also done in purpose of background knowledge. The tenant-owner’s association Duvan at Petterslundsgatan in Uppsala installed year 1999-2000 a geothermal heating system. The purpose of this installation was that they hoped it would lead to a smaller usage of district heating which would lead to a reduction of the heating expenses for their buildings. The geothermal heating system consists of 19 energy wells and 4 geothermal heat pumps, and it is one of the first systems of that size in the region of Uppsala. Due to that, the system at Duvan is referred to as a reference project for geothermal heating system of this size. The reason that the study was made after 5 years is that it takes about 5 years before the heat equilibrium in the bedrock has been stabilized after a geothermal heat system has been installed. The temperature in the bedrock will decrease during this 5 year period and the performance of the system will change. In this report factors such as geology, groundwater levels and temperature changes are examined to get a summery of the processes that extract heat from the bedrock and convert it to conventional energy. Data from the compressors has been examined, energy usage before and after the installation of the system has been compared and finally an economical calculation of the tenant-owner’s association energy consumption has been made. All the main points in this report point to the fact that the system is working properly and that it has contributed to an economical benefit regarding to the energy usage. / Syftet med detta examensarbete var att göra en fallstudie på ett befintligt bergvärmesystem som har varit i drift i 5 år, och studera om dess prestanda har förändrats under den tid som systemet använts. Som bakgrund genomfördes även en litteraturstudie över de processer som äger rum då geotermisk energi kan utvinnas samt hur denna energi konverteras till konventionell energi för uppvärmning av lokaler. Bostadsrättsföreningen Duvan på Petterslundsgatan i Uppsala installerade under år 1999-2000 ett bergvärmesystem som skulle leda till ett mindre användande av fjärrvärme och således bidra till att utgifterna för inköp av energi skulle minska. Systemet består av 19 energibrunnar och 4 värmepumpar, och är en av de första anläggningarna av denna storlek i Uppsala regionen. Detta gör att Bostadsrättsföreningen Duvan ses som ett referensobjekt för anläggningar av denna storlek. Anledningen till att studien gjordes vid denna tidpunkt var att det tar ungefär 5 år innan värmebalansen i berggrunden stabiliseras när ett bergvärmesystem installeras, och temperaturen i berggrunden kommer under denna period minska vilket leder till prestandaförändringar hos värmepumpen. Denna femårsperiod har nu gått och en relevant undersökning av systemet har kunnat göras. I denna rapport beskrivs bakomliggande parametrar så som geologi, grundvattennivåer och temperaturförändringar som behövs för att få en överblick över situationen och kunna ge en inblick i vad som påverkar utvinningen av energi i berggrunden. Data från kompressorernas drifttider och förbrukning av energi före och efter installationen av bergvärmesystemet jämförs och slutligen görs en ekonomisk kalkyl för bostadsrättsföreningens energiförbrukning. Alla de punkter som rapporten undersöker visar att systemet fungerar väl och att det bidragit till en ekonomisk vinst med avseende på energianvändandet.
102

Supplemental heat rejection in ground source heat pumps for residential houses in Texas and other semi-arid regions

Balasubramanian, Siddharth 08 February 2012 (has links)
Ground source heat pumps (GSHP) are efficient alternatives to air source heat pumps to provide heating and cooling for conditioned buildings. GSHPs are widely deployed in the midwest and eastern regions of the United States but less so in Texas and the southwest regions whose climates are described as being semi-arid. In these semi-arid regions, building loads are typically cooling dominated so the unbalance in energy loads to the ground, coupled with less conductive soil, cause the ground temperature to increase over time if the ground loop is not properly sized. To address this ground heating problem especially in commercial building applications, GSHPs are coupled with supplemental heat recovery/rejection (SHR) systems that remove heat from the water before it is circulated back into the ground loops. These hybrid ground source heat pump systems are designed to reduce ground heating and to lower the initial costs by requiring less number of or shallower boreholes to be drilled. This thesis provides detailed analyses of different SHR systems coupled to GSHPs specifically for residential buildings. The systems are analyzed and sized for a 2100 ft2 residential house, using Austin, Texas weather data and ground conditions. The SHR systems investigated are described by two heat rejection strategies: 1) reject heat directly from the water before it enters the ground loops and 2) reject heat from the refrigerant loop of the vapor compression cycle (VCC) of the heat pump so less heat is transferred to the water loop at the condenser of the VCC. The SHR systems analyzed in this thesis are cooling towers, optimized VCC, expanded desuperheaters and thermosyphons. The cooling towers focus on the direct heat rejection from the water loop. The VCC, desuperheater, and thermosyphon systems focus on minimizing the amount of heat rejected by the VCC refrigerant to the water loop. In each case, a detailed description of the model is presented, a parametric analysis is provided to determine the amounts of heat that can be rejected from the water loop for various cases of operation, and the practical feasibility of implementation is discussed. An economic analysis is also provided to determine the cost effectiveness of each method. / text
103

An investigation of the air-to-air cycle heat pump for air conditioning in the southwest

Yamazaki, Sumio, 1926- January 1956 (has links)
No description available.
104

Combined permeable pavement and ground source heat pump systems

Grabowiecki, Piotr January 2010 (has links)
The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in these systems allows for the survival of pathogenic organisms within the sub‐base. Salmonella sp, Escherichia coli, Enterococci and total heterotrophic bacteria were analysed in order to assess potential risk to health. Supplementary carbon dioxide monitoring indicated relatively high microbial activity on the geotextile and within the lower parts of the sub‐base. Anaerobic processes were concentrated in the space around the geotextile, where carbon dioxide concentrations reached up to 2000 ppm. The overall water treatment potential was high, with up to 99% biochemical oxygen demand removal. Variable removal efficiencies have been calculated for nutrients such as ortho‐phosphate‐phosphorus, ammonia and nitrates/nitrites. Calculated Coefficients of Performance and Energy Efficiency Rates provided evidence on correctness of GSHP design. Collected data was analysed with non‐parametrical statistics and a self‐organizing map model was used to assess relationships between variables. Findings present correlations considered as low and insignificant between temperature fluctuations and pathogen numbers. Highly significant correlations (p<0.01) were calculated for influent‐effluent relationships. Air and water temperatures and water quality data variability within the systems provided evidence for the high level of biological processes leading to a low risk of pathogen transition to human.
105

An absorption refrigeration system using ionic liquid and hydrofluorocarbon working fluids

Kim, Sarah Sungeun 22 May 2014 (has links)
Efficient heat management in energy intensive applications such as server and data centers has become a national concern due to the magnitude of the energy consumed. In that matter, the absorption refrigeration system is an attractive solution because the abundant waste heat available in the data centers can be recycled to run the heat pump, which will bring about significant cooling cost savings. The use of absorption refrigeration has been limited due to the drawbacks related to the working fluids in commercially available equipment. Recently, ionic liquids (ILs) have been suggested as the absorbent in absorption heat pumps due to their tunable properties, negligible volatility and high thermal stability. The non-random-two-liquid-model was initially used to analyze the feasibility of the new IL based working fluid. Hydrofluorocarbons (HFCs) were paired with IL absorbents due to their good properties as refrigerants. The cooling-to-total-energy (CE) efficiency had a local maximum with respect to desorber temperature due to the solubility limit at lower temperatures and large heating requirements at higher temperatures. The waste heat recycling coefficient of performance (COP) continually increased with respect to desorber temperature and among the HFCs studied in this work, R134 gave the highest COP value, which is up to 40 times higher than that of typical vapor compression systems and 60 times higher than NH3/H2O and H2O/LiBr absorption refrigeration systems. A Redlich-Kwong equation of state (RK-EOS) was employed for accurate computation of mixture properties over a wide range of operating conditions. Analysis using the RK-EOS model showed that the CE trend in refrigerants followed the trend of solubility in the [bmim][PF6] IL. However, the trend in COP was different from that of CE as the operating pressure ranges became an important factor. Required pumping work of the working fluids has also been analyzed using a two phase pressure drop equation and the results show that the impact of viscous IL flow is insignificant compared to the total pumping work. The HFCs studied in this work have very similar structures. However, the extent of solubility and system efficiency in the same IL, [bmim][PF6], made a large difference. Most surprisingly, even when the refrigerant had the same chemical formula, the change in fluorine position in tetrafluoroethane showed significantly different system performance. The symmetrical tetrafluoroethane had superior CE and COP over the asymmetrical tetrafluoroethane most likely due to the higher probability to form hydrogen bonding with the absorbent. The computational results for various HFC/IL pairs show that in selecting the working fluid pairs, the refrigerant should have high overall solubility in the IL and a large gradient of solubility with respect to temperature. Also, refrigerants with small pressure ranges are preferred. In addition to the simulation study, a bench-top absorption refrigeration system was built and operated using IL based working fluids for the first time. The effect of cooling was observed by operating the test system. The experimental results were congruent with the predictions from the modeling work. In conclusion, an absorption refrigeration system based on the IL chemical compressor has been shown to be a promising solution in applications which need efficient cooling and generate abundant waste heat.
106

Informing the practice of ground heat exchanger design through numerical simulations

Haslam, Simon R. January 2013 (has links)
Closed-loop ground source heat pumps (GSHPs) are used to transfer thermal energy between the subsurface and conditioned spaces for heating and cooling applications. A basic GSHP is composed of a ground heat exchanger (GHX), which is a closed loop of pipe buried in the shallow subsurface circulating a heat exchange fluid, connected to a heat pump. These systems offer an energy efficient alternative to conventional heating and cooling systems; however, installation costs are higher due to the additional cost associated with the GHX. By further developing our understanding of how these ground loops interact with the subsurface, it may possible to design them more intelligently, efficiently, and economically. To gain insight into the physical processes occurring between the GHX and the subsurface and to identify efficiencies and inefficiencies in GSHP design and operation, two main research goals were defined: comprehensive monitoring of a fully functioning GSHP and intensive simulation of these systems using computer models. A 6-ton GSHP was installed at a residence in Elora, ON. An array of 64 temperature sensors was installed on and surrounding the GHX and power consumption and temperature sensors were installed on the system inside the residence. The data collected were used to help characterize and understand the function of the system, provide motivation for further investigations, and assess the impact of the time of use billing scheme on GSHP operation costs. To simulate GSHPs, two computer models were utilized. A 3D finite element model was employed to analyse the effects of pipe configuration and pipe spacing on system performance. A unique, transient 1D finite difference heat conduction model was developed to simulate a single pipe in a U-tube shape with inter-pipe interactions and was benchmarked against a tested analytical solution. The model was used to compare quasi-steady state and transient simulation of GSHPs, identify system performance efficiencies through pump schedule optimization, and investigate the effect of pipe length on system performance. A comprehensive comparison of steady state and pulsed simulation concludes that it is possible to simulate transient operation using a steady state assumption for some cases. Optimal pipe configurations are identified for a range of soil thermal properties. Optimized pump schedules are identified and analysed for a specific heat pump and fluid circulation pump. Finally, the effect of pipe spacing and length on system performance is characterized. It was found that there are few design inefficiencies that could be easily addressed to improve general design practice.
107

Thermally activated miniaturized cooling system

Determan, Matthew Delos 05 May 2008 (has links)
A comprehensive study of a miniaturized thermally activated cooling system was conducted. This study represents the first work to conceptualize, design, fabricate and successfully test a thermally activated cooling system for mobile applications. Thermally activated systems have the ability to produce useful cooling from waste heat streams or directly from the combustion of liquid fuels. Numerous concepts of miniaturized or mobile, active cooling systems exist in the literature but up to this point, successful fabrication and testing has not been documented. During this study, a breadboard absorption heat pump system was fabricated from off the shelf or in-house, custom-built components. The breadboard system was used to validate the feasibility of operating an absorption heat pump with a cooling capacity of about 300 W. Subsequently, a flexible and scalable design methodology for designing miniaturized absorption heat pumps was developed. A miniaturized, 300 W nominal cooling capacity ammonia/water absorption heat pump cycle with overall dimensions of 200 × 200 × 34 mm and a mass of 7 kg was then fabricated and tested. Testing of the absorption heat pump was conducted over a range of heat sink temperatures (20 ≤ T ≤ 35°C) and desorber thermal input rates (500 ≤ Q ≤ 800 W). Evaporator coolant heat duties in the study ranged from 136 to 300 W, while system COPs ranged from 0.247 to 0.434. At a nominal rating condition of 35°C heat sink temperature, the maximum thermal input of 800 W produced a cooling effect of 230 W. This represents a cycle COP of 0.29. Analysis of the experimental data indicated that future work should focus on improved desorber and rectifier designs to improve refrigerant purity. It is estimated that a system similar to the one in this study, with all fluid connections made internal to the system, could achieve the same cooling capacity with a system mass of 2.5 - 3.5 kg in an envelop of 120 × 120 × 25 mm.
108

Luft-luftvärmepumpar för skyddsvärme i kyrkor

Broström, Tor January 2010 (has links)
The use of air-to-air heat pumps in a church has been investigated with respect to preservation aspects and energy efficiency. The paper discusses the general problem and presents the results from a case study. The temperatures, velocities and humidity in the church have been measured for four different heating modes. The study shows that there is a significant potential for energy savings with heat pumps and that temperature distribution and air movements are comparable to conventional heating.
109

Investigation of edge effects in thermoacoustic couple measurements

Liu, Wei-Hsin. January 1990 (has links) (PDF)
Thesis (M.S. in Engineering Acoustics)--Naval Postgraduate School, December 1990. / Thesis Advisor(s): Atchley, Anthony A. ; Hofler, Thomas J. "December 1990." Description based on title screen as viewed on March 31, 2010. DTIC Descriptor(s): Heat Transfer, Coupling (Interaction), Peak Values, Ratios, Temperature, Thermodynamics, Edges, Isolation, Sensitivity, Regions, Short Range (Time), Profiles, Plates, Internal, Acoustic Arrays, Pressure, Drives, Leading Edges, Mean, Amplitude, Sound Pressure, Stacking, Thermopiles. DTIC Identifier(s): Heat Pumps, Energy Conversion, Energy Storage, Heat Transfer, Thermoacoustic Couples, Theses Author(s) subject terms: Acoustics, Thermoacoustics, Thermoacoustic Heat Transport. Includes bibliographical references (p. 34). Also available in print.
110

Desenvolvimento de um sistema de bomba de calor agua/agua para resfriammento e secagem de tomates / Development of a system for heat pump water/water for cooling and drying of tomatoes

Pacco, Honorato Ccalli 13 August 2018 (has links)
Orientadores: Luis Augusto Barbosa Cortez, Clement Vigneault / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agricola / Made available in DSpace on 2018-08-13T00:43:44Z (GMT). No. of bitstreams: 1 Pacco_HonoratoCcalli_D.pdf: 2218807 bytes, checksum: 9f384addc930a54138830ae79ac34adf (MD5) Previous issue date: 2008 / Resumo: O tomate destinado tanto ao consumo de mesa, in natura, quanto à produção industrial, é uma hortaliça consumida o ano inteiro, sendo o Brasil um grande produtor, nas regiões Centro Sul e em algumas regiões do Nordeste e Sul do país. Mas as perdas pós-colheita superam 50 % durante o processo de colheita e de pós-colheita. Estas perdas são principalmente de tipos mecânica, fisiológica ou patológica. Portanto a utilização de uma tecnologia apropriada, como neste caso a concepção de um sistema de bomba de calor água/água em cascata, permitirá reduzir consideravelmente as perdas da pós-colheita dos tomates. Utilizando o sistema em conjunto, circuito de baixa e alta pressão na produção de água gelada (2°C) e quente (90°C), pode ser aproveitado para realizar as operações de resfriamento rápido por água gelada por aspersão, tipo chuveiro para tomates em estado de maturação verde maduro antes da embalagem para seu transporte em sistemas refrigerados para os mercados de comercialização em condições de qualidade exigida pelo consumidor. Ao mesmo tempo com a utilização do lado de alta pressão (alta temperatura) do sistema em estudo será possível a produção de uma fonte quente para atingir temperaturas (60 e 75°C) programadas no secador de bandejas e assim realizar a operação de secagem de tomates, previamente pré-tratados (redução de tamanho e eliminação de sementes) com fins de obter uma melhor transferência de calor no produto, e com a conseqüente eliminação de grande quantidade de água contida, reduzindo seu peso e volume, permitindo melhor conservação por tempo mais prolongado, fácil transporte e econômico. Para a determinação do melhor desempenho do sistema de bomba de calor indicado, foram realizados ensaios com a finalidade de encontrar o fluido refrigerante que atinja o melhor coeficiente de performance no ciclo de baixa e alta pressão, em base na melhor capacidade de trabalho na temperatura (abaixo de 0°C) de evaporação e condensação (perto de 90°C), e também com considerações de custo - beneficio. Assim foram testados os fluidos refrigerantes como o MP39, o R22, o R600 e R600a. O R22 mostrou melhor eficiência no circuito de baixa pressão, enquanto que o R600 teve melhor performance no circuito termodinâmico de alta pressão. Depois da escolha do melhor fluido refrigerante, se realizou a operação de resfriamento dos tomates, utilizando o sistema desenvolvido, onde o produto resfriado teve os mesmos resultados quando resfriado em outro sistema de bomba de calor convencional. Realizada a operação de secagem de tomates pré-tratados no sistema de bomba de calor, mostrou-se que o secador de bandejas operando com uma fonte de calor produzida pelo circuito da alta pressão ou de alta temperatura, atingiram-se as características de um produto seco em secador de bandejas com fonte de calor aquecida por resistência elétrica. Com estes resultados os objetivos planejados foram atingidos, mostrando a redução de consumo de energia no resfriamento e secagem de tomates (30%) e com boa qualidade de sabor, cor e umidade no produto final que o consumidor aceitaria. O sistema seria de muita utilidade para os produtores e distribuidores de tomates no Brasil / Abstract: Tomato fruits are destined for consumption all around the year either in their natural form or as industrial product. Brazil is one the largest producers of tomato and its production is mainly located in the Center South regions and some northeast regions the country. Brazil also faces postharvest losses surpassing 50% of the production. The origin of these losses is mainly from mechanical, physiological or pathological injuries. The use of appropriate technologies, in the present case, the conception of an in-cascade water to water heat pump system could allow considerably reducing these losses. The system presented is and inset low and high pressure cycles to generate simultaneously cold and warm water to meet the requirement of fast cooling and drying system. The low pressure cycle generate the cold water for an aspersion hydrocooling system to cool down tomato fruits before being transported and commercialized to meet the increasing demand of the consumer for produce of high quality. At the same time, the high-pressure and high temperature cycle of the system produce heat stored in a form of hot water to produce air at the required temperature for drying tomato fruits previously cut and eliminating seed to eliminate a large amount of water contained in the produce, thus by reducing the weight and volume. Such dried tomato fruits better allow more time to be commercialized and used generating better economic returns and easier transportation. For obtaining optimum performance of the heat pump system, testes were carried out to determine the best cooling fluid, reaching the maximum coefficient of performance (COP). The R22 showed the best efficiency in the cycle of low pressure, while the R600 had better performance in the high-pressure thermodynamic cycle. Using these two fluid, the developed system was operated for cooling tomatoes and showed the same the results than conventional cooler but with better COP. Drying tomato operation using this incascade heat pump system revealed that the batch drier operating with the high-pressure or high temperature heat source cycle produced the same characteristics of dry product than drying batches of tomato fruits with electric resistance heat source. With these results the present objectives were reached, showing an important reduction of energy required for cooling and drying tomato fruits simultaneously and producing of good quality food, a product that the eventual consumer would accept. This system will be of much utility for the producers and processors of tomato in the entire Brazil / Doutorado / Tecnologia Pós-Colheita / Doutor em Engenharia Agrícola

Page generated in 0.053 seconds