• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energieffektiv processventilation för aluminiumvarmvalsverk / Energy-efficient proess ventilation for aluminum hot rolling mill

Tengvall, Fredrik, Olsson, Tobias January 2012 (has links)
Syftet med detta examensarbete har varit att genomföra en nulägesanalys av Hall 7 på Sapa Heat Transfer AB i Finspång. Utifrån nulägesanalysen togs åtgärdsförslag fram som kan generera en effektivare uppvärmning, mindre yttre utsläpp och behagligare arbetsklimat. Problemet i Hall 7 är att processventilationen för varmvalsverk 2051 är ålderstigen och underdimensionerad, den saknar även värmeåtervinning och rening av processfrånluften. Detta leder till oplanerade driftstopp, höga underhållskostnader samt hög energianvändning. För att finna åtgärdsförslag för dessa problem genomfördes en nulägesanalys av Hall 7 genom att mäta luftflöden och temperaturer, analysera utsläppsmätningar och energianvändning samt intervjua personal. Utifrån dessa mätningar har fyra olika åtgärdsförslag tagits fram. De fyra åtgärdsförslagen är benämns: YIT, YIT (Enklare), Homehall och Ökad tilluft. Det åtgärdsförslag som anses vara bäst lämpat för att generera en effektivare uppvärmning, ge mindre yttre utsläpp samt ett behagligare arbetsklimat i Hall 7 är åtgärdsförslag Homehall. Detta medför att Hall 7 kan bli nästintill självförsörjande med värme och fjärrvärmekostnaden kommer att sjunka markant. Mer om åtgärdsförslaget finns att läsa i 6.1.3 Värmeåtervinning från Homhall. Under arbetets gång har även tre arbetsmiljöåtgärder tagits fram så som optimerad portstyrning för att minska värmeförluster och nedsmutsning, minskning av oljedimma genom ombyggnation av kåpa för processfrånluft och tätning av valsoljeläckage. Även åtgärder för undertryck för att uppnå tryckbalans och därmed bättre arbetsmiljö i Hall 7 har presenterats. Förslag har även lämnats för fortsatt arbete gällande uppföljning av ventilationsstyrning, minskning av undertryck, kommunikation mellan personal och ledning, inställning hos personalen samt omkonstruktion av kåpa över varmvalsverk 2051. / The purpose of this bachelor thesis has been to conduct a situation analysis of Hall 7 at Sapa Heat Transfer AB in Finspång. Based on the current status analysis, proposals for action is to be developed that can generate a more efficient warm-up, less emission and a more pleasant work environment in Hall 7. The problem in Hall 7 is that the process ventilation for hot rolling mill 2051 is aged and undersized, it also does not have heat recovery or purification of the air which results in unplanned downtime, high maintenance costs and high use of energy. To find proposals of action for these problems a current situation analysis was developed from measure of airflows and temperatures, analysis of external emissions, analysis of energy invoices and by interviewing employees. From these measurements, four different proposals for action developed. The four proposals of action are named YIT, YIT (Simple), Homehal and Increased inlet air. The proposed action that is considered best suited to generate a more efficient heating, giving small external emissions and a more pleasant work environment in Hall 7 is proposed action 6.1.3. This results in that Hall 7 becomes almost self-sufficient in heating and heating costs will drop significantly. More on the proposed measure can be found in 6.1.3 Värmeåtervinning från Homhall. During the work, three health preventive actions developed, as optimized port control to reduce heat loss and pollution, reduction of oil vapor through reconstruction of housing for process ventilation and seal of oil leakage. Certain proposal of action has also been developed to achieve pressure balance in Hall 7 to achieve better work climate.
2

Stockage de la chaleur dans un lit de particules à changement de phase / Heat storage in a phase change particle bed

Belot, Malik 21 November 2018 (has links)
La thèse porte sur la caractérisation des transferts thermiques dans les milieux fluide-particules, notamment en proposant un modèle décrivant le changement de phase au sein de particules sous écoulement fluide. Les transferts thermiques sont modélisés en prenant en compte l'influence de la résistance aux transferts externes (échanges avec le fluide) et internes (conduction à travers la particule et sa paroi, convection naturelle dans la phase liquide de la particule, changement de phase) à la particule. Les échanges externes avec le fluide sont pris en compte à l’aide de corrélations liant un nombre de Nusselt externe aux nombres de Reynolds et de Prandtl. La conduction interne est décrite à l’aide de solutions analytiques. L’effet de la convection naturelle a été étudié sur une particule isolée soumise à un gradient de température sous différents nombres de Rayleigh et de Prandtl permettant son déclenchement. Les résultats obtenus ont permis d’établir une corrélation reliant un nombre de Nusselt interne aux nombres de Prandtl et Rayleigh de la particule. Cette corrélation permet de recalculer l’évolution temporelle de la température moyenne de la particule en prenant en compte l’effet de la convection naturelle. Le changement de phase est décrit grâce à un modèle local basé sur l’approche « Phase Field » moyenné sur l’ensemble de la particule et validé par comparaison avec des résultats numériques et expérimentaux issus de la littérature. Enfin, le modèle complet et l’influence des phénomènes pris en compte sont testés sur un lit fixe de particules à l’échelle moyennée (Discrete Element Method–Computional Fluids Dynamics). La conduction et la convection interne donnent une quantité totale d’énergie stockée relativement similaire dans le lit à nombre de Biot égal, mais dont la distribution est différente. Le changement de phase tend à grandement densifier le stockage. Une augmentation du nombre de Biot tend à augmenter la quantité d’énergie stockée. Enfin, il est montré que les transferts sont dépendants de la distribution de porosité. / This work intends to characterize heat transfer in fluid-particle flows, specifically when phase change occurs inside the particles. The proposed model takes into account the external heat resistance (heat transfer at the particle-fluid interface) and the internal heat resistance (conduction inside and at the wall of the particle, natural convection in the liquid phase of the particle, phase change). External transfer with the surrounding fluid is described by correlations linking an external Nusselt number to Reynolds and Prandtl numbers related to the surrounding fluid. Internal conduction is calculated thanks to analytical solutions. The influence of natural convection was studied on an isolated sphere for different combinations of Rayleigh and Prandtl numbers. A correlation between an internal Nusselt number, and particle Rayleigh and Prandtl numbers was established using these simulations. This correlation allows calculating the transient evolution of the average temperature of the particle when natural convection occurs. Phase change is taken into account by a Phase Field model averaged over the particle and validated by comparison with experimental and numerical studies from the literature. Finally, the whole model and the effects of the different phenomena it describes are tested on a fixed bed of particles at mesoscopic scale using a Discrete Element Method–Computional Fluids Dynamics (DEM-CFD) model. Internal conduction and natural convection gives similar quantities of total energy stored for the same Biot number, however heat transfer distribution is modified. Phase change greatly reduces the volume of storage. Increasing the Biot number leads to a greater amount of energy stored. Finally, heat transfer greatly depends on porosity distribution.

Page generated in 0.174 seconds