• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 120
  • 23
  • 21
  • 16
  • 15
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 298
  • 298
  • 67
  • 62
  • 48
  • 48
  • 46
  • 41
  • 35
  • 35
  • 29
  • 26
  • 25
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Design and Calibration of a Novel High Temperature Heat Flux Sensor

Raphael-Mabel, Sujay Anand 20 April 2005 (has links)
Heat flux gages are important in applications where measurement of the transfer of energy is more important than measurement of the temperature itself. There is a need for a heat flux sensor that can perform reliably for long periods of time in high temperature and high heat flux environment. The primary objective is to design and build a heat flux sensor that is capable of operating for extended periods of time in a high heat flux and high temperature environment. A High Temperature Heat Flux Sensor (HTHFS) was made by connecting 10 brass and steel thermocouple junctions in a thermopile circuit. This gage does not have a separate thermal resistance layer making it easier to fabricate. The HTHFS was calibrated in a custom-made convection calibration facility using a commercial Heat Flux Microsensor (HFM) as the calibration standard. The measured sensitivity of the HTHFS was 20.4 ±2.0ìV/(W/cm2). The measured sensitivity value matched with the theoretically calculated value of 20.5 ìV/(W/cm2). The average sensitivity of the HTHFS prototype was one-fifth of the sensitivity of a commercially available HFM. Better ways of mounting the HTHFS in the calibration stand have been recommended for future tests on the HTHFS for better testing. The HTHFS has the potential to be made into a microsensor with thousands of junctions added together in a thermopile circuit. This could lead to a heat flux sensor that could generate large signals (~few mV) and also be capable of operating in high heat flux and high temperature conditions. / Master of Science
72

Desing of the high Pressure HIgh temperature annuLUS flow (PHILUS) Facility

Karabacak, Ali Haydar 17 June 2022 (has links)
Critical heat flux (CHF) and post-CHF are two critical phenomena in light water-cooled nuclear power plants regarding safety. Even though the general trends of CHF and post- CHF are known, the exact mechanisms are still unknown. To better understand CHF and post-CHF, experimental flow boiling facilities are constructed around the world. However, these facilities are limited in their experimental conditions and spatial resolution necessary to advance our understanding of two-phase heat transfer. Previous rod surface measurements were collected with thermocouples to measure CHF location and temperature excursion, yet thermocouples provide limited spatial resolution, which leads to significant uncertainties in the CHF prediction. On the other hand, optical fiber temperature sensors can measure the temperature and the CHF propagation with high spatial resolution. Also, the capability of the optical fiber at high temperatures has been proven in previous studies. The current study aims to apply optical fiber at high-pressure and high mass fluxes. The high-Pressure HIgh-temperature annuLUS flow (PHILUS) facility was designed to provide desired working conditions in the test section that uses optical fiber temperature sensors. The PHILUS test section has a length of 1320 mm, with 1000 mm of heated length. The working conditions of the PHILUS are up to 18 MPa, temperatures up to 357◦C, and coolant mass flux from 500 to 3700 kg/m2s. The main components of the loop are a steam separator, two heat exchangers (a condenser and a cooler), a bladder-type accumulator, two bypass lines, and a high-pressure pump. Coolant-Boiling in Rod Arrays-Two Fluids (COBRA-TF) code was used to design the CHF and post-CHF experiments to be performed at the PHILUS facility. / Master of Science / A nuclear power plant produces heat which is transferred from the reactor core through the coolant. The coolant water flows through the reactor core to safely transport the heat that ultimately is used to produce electrical energy. If the balance between the power produced by fission and the energy removed by the coolant is changed, it can lead to potential damage to the reactor core. The maximum heat transfer rate occurs at the point where a vapor blanket covers the surface of the fuel cladding. At this point, known as Critical Heat Flux (CHF), the surface temperature drastically increases. To better understand and better predict the CHF, experimental facilities are needed. Even though there are several facilities worldwide, most of them have limited working conditions and measurement capabilities. Past experiments used thermocouples to measure the surface temperature with a very small spatial resolution, which causes very large uncertainties in the CHF and post-CHF predictions. On the other hand, optical fiber sensors can be used to measure temperature with very high spatial resolution. The high-Pressure HIgh-temperature annuLUS flow (PHILUS) facility was designed in this work to apply optical fibers in the measurement of the rod surface temperature and simulations were performed to show its advantages. The working conditions of the PHILUS are comparable to commercial pressurized water reactors.
73

Convective heat flux determination using surface temperature history measurements and an inverse calculation method

Bezuidenhout, Johannes Jurie 16 January 2001 (has links)
Effective gages to measure skin friction and heat transfer have been established over decades. One of the most important criteria in designing such a gage is the physical size of the gage to minimise the interference of the flow, as well as the mass of these devices. The combined measurement of skin friction and heat flux using one single gage on the other hand, present unique opportunities and with it, unique technical problems. The objective of this study is therefore to develop a cost-effective single gage that can be used to measure both skin friction and heat flux. The method proposed in this study is to install a coaxial thermocouple into an existing skin friction gage to measure the unsteady temperature on the surface of the gage. By using the temperature history and a computer program the heat flux through the surface can be obtained through an iterative guessing method. To ensure that the heat flux through the gage is similar to the heat flux through the rest of the surface, the gage is manufactured of a material very similar to the rest of the surface. Walker developed a computer program capable of predicting the heat flux through a surface from the measured surface temperature history. The program is based on an inverse approach to calculate the heat flux through the surface. The biggest advantages of this method are its stability and the small amount of noise induced into the system. The drawback of the method is that it is limited to semi-infinite objects. For surfaces with a finite thickness, a second thermocouple was installed into the system some distance below the first thermocouple. By modifying the computer program these two unsteady temperatures can be used to predict the heat flux through a surface of finite thickness. As part of this study, the effect of noise induced by the Cook-Felderman technique, found in the literature were investigated in detail and it was concluded that the method proposed in this study is superior to this Cook-Felderman method. Heat flux measurements compared well with measurements recorded with heat flux gages. In all cases evaluated the difference was less than 20%. It can therefore be concluded that heat flux gages on their own can measure surface heat flux very accurately. These gages are however too large to install in a skin-friction gage. The method introduced in this study is noisier than the heat flux gages on their own, but the size which is very important, is magnitudes smaller when using a coaxial thermocouple, to measure the surface temperature history. / Master of Science
74

Flammability Characteristics at Heat Fluxes up to 200 kW/m2 and The Effect of Oxygen on Flame Heat Flux

Beaulieu, Patricia 19 December 2005 (has links)
"This dissertation documents two interrelated studies that were conducted to more fundamentally understand the scalability of flame heat flux. The first study used an applied heat flux in the bench scale horizontal orientation which simulates a large scale flame heat flux. The second study used enhanced ambient oxygen to actually increase the bench scale flame heat flux itself. Understanding the scalability of flame heat flux more fully will allow better ignition and combustion models to be developed as well as improved test methods. The key aspect of the first study was the use of real scale applied heat flux up to 200 kW/m2. An unexpected non-linear trend is observed in the typical plotting methods currently used in fire protection engineering for ignition and mass loss flux data for several materials tested. This non-linearity is a true material response. This study shows that viewing ignition as an inert material process is inaccurate at predicting the surface temperature at higher heat fluxes and suggests that decomposition kinetics at the surface and possibly even in-depth may need to be included in an analysis of the process of ignition. This study also shows that viewing burning strictly as a surface process where the decomposition kinetics is lumped into the heat of gasification may be inaccurate and the energy balance is too simplified to represent the physics occurring. The key aspect of the second study was direct experimental measurements of flame heat flux back to the burning surface for 20.9 to 40 % ambient oxygen concentrations. The total flame heat flux in enhanced ambient oxygen does not simulate large scale flame heat flux in the horizontal orientation. The vertical orientation shows that enhanced ambient oxygen increases the flame heat flux more significantly and also increases the measured flame spread velocity."
75

Land Use /Land Cover Driven Surface Energy Balance and Convective Rainfall Change in South Florida

Kandel, Hari P 01 July 2015 (has links)
Modification of land use/land cover in South Florida has posed a major challenge in the region’s eco-hydrology by shifting the surface-atmosphere water and energy balance. Although drainage and development in South Florida took place extensively between the mid- and late- 20th century, converting half of the original Everglades into agricultural and urban areas, urban expansion still accounts for a dominant mode of surface cover change in South Florida. Changes in surface cover directly affect the radiative, thermophysical and aerodynamic parameters which determine the absorption and partitioning of radiation into different components at the Earth surface. The alteration is responsible for changing the thermal structure of the surface and surface layer atmosphere, eventually modifying surface-induced convection. This dissertation is aimed at analyzing the extent and pattern of land cover change in South Florida and delineating the associated development of urban heat island (UHI), energy flux alteration, and convective rainfall modification using observed data, remotely sensed estimates, and modeled results. Urban land covers in South Florida are found to have increased by 10% from 1974 to 2011. Higher Landsat-derived land surface temperatures (LST) are observed in urban areas (LSTu-r =2.8°C) with satisfactory validation statistics for eastern stations (Nash-Sutcliffe coefficient =0.70 and R2 =0.79). Time series trends, significantly negative for diurnal temperature range (DTR= -1°C, p=0.005) and positive for lifting condensation level (LCL > 20m) reveal temporal and conspicuous urban-rural differences in nocturnal temperature (ΔTu-r = 4°C) shows spatial signatures of UHI. Spatially higher (urban: 3, forest: 0.14) and temporally increasing (urban: 1.67 to 3) Bowen’s ratios, and sensible heat fluxes exceeding net radiation in medium and high-intensity developed areas in 2010 reflect the effect of urbanization on surface energy balance. Radar reflectivity-derived surface-induced convective rainfall reveals significantly positive mean differences (thunderstorm cell density: 6/1000 km2and rain rate: 0.24 mm/hr/summer, p < 0.005) between urban and entire South Florida indicating convective enhancement by urban covers. The research fulfils its two-fold purposes: advancing the understanding of post-development hydrometeorology in South Florida and investigating the spatial and temporal impacts of land cover change on the microclimate of a subtropical city.
76

Eddy Covariance in a Tallgrass Prairie: energy balance closure, water and carbon budgets, and shrub expansion

Arnold, Kira Brianne January 1900 (has links)
Master of Science / Department of Agronomy / Jay Ham / The exchange of water, carbon, and energy between grasslands and the atmosphere is an important biogeochemical pathway affecting ecosystem productivity and sustainability. The eddy covariance (EC) technique directly measures this mass and energy exchange. However, questions remain regarding the accuracy of EC-derived H[subscript]2O and CO[subscript]2 fluxes in landscapes with irregular topography and variable vegetation. These concerns stem from the "energy balance (EB) closure problem" (i.e., measured energy in does not equal measured energy out). My main objectives were to examine EB closure at two topographical positions within an annually burned tallgrass prairie watershed and to examine the effect of landscape position and woody encroachment on carbon and water exchanges. In tallgrass prairie, 14 km south of Manhattan, KS, USA, EC towers were deployed at three sites in 2007 and 2008. One upland and lowland tower were within an annually burned watershed dominated by C[subscript]4 grasses. Another lowland tower was deployed in a separate quadrennial-burned watershed where significant woody vegetation occupied the tower's sampling area. All towers measured EB components (net radiation, R[subscript]n; soil heat flux, G; sensible heat flux, H; and latent heat flux, [lambda]E). In the annually burned watershed, landscape position had little effect on G, H, and R[subscript]n with differences [less than] 2% between sites. However lowland [lambda]E was 8% higher, owing to larger plant biomass/leaf area and greater soil moisture. Energy balance closure (i.e., [[lambda]E + H] / [R[subscript]n - G]) was 0.87 and 0.90 at the upland and lowland sites, respectively. A nearby large-aperture scintillometer provided good validation of EC-derived H in 2007. Data suggested that underestimates of [lambda]E may have accounted for the closure problem; sample calculations showed that increasing [lambda]E by 17% would have resulted in near prefect closure. Data from this study suggests that EB closure does not strongly correlate with topographical position; however these data raise questions regarding accuracy of the [lambda]E term. Mass exchange analysis shows that the prairie carbon cycle is highly dependent on burning. The lowland and upland annually burned sites saw carbon gains of 281 to 444 g C m[superscript]-[superscript]2 yr[superscript]-[superscript]1 before burning with the shrub lowland showing the least (e.g. 159 and 172 g C m[superscript]-[superscript]2 yr[superscript]-[superscript]1). After the prescribed burn, the upland and lowland sites remained slight carbon sinks (68 to 191 g C m[superscript]-[superscript]2 yr[superscript]-[superscript]1), whereas the unburned shrub site was a carbon sink in 2007 (159 g C m[superscript]-[superscript]2 yr[superscript]-[superscript]1, because no carbon loss was incurred via burning) and a large carbon source in 2008 when it was burned the following year (336 g C m[superscript]-[superscript]2 yr[superscript]-[superscript]1 loss). Evapotranspiration (ET) was highest at the shrub lowland where greater soil moisture and abundance of deep-rooted C[subscript]3 shrub vegetation allowed greater uptake and loss of water.
77

The Behaviour of the Latent Heat Exchange Coefficient in the Stable Marine Boundary Layer

Lindgren, Kristina January 2008 (has links)
<p>Knowledge of the turbulent fluxes at the sea surface is important for understanding the interaction between atmosphere and ocean. With better knowledge, improvements in the estimation of the heat exchange coefficients can be made and hence models are able to predict the weather and future climate with higher accuracy.</p><p>The exchange coefficients of latent and sensible heat during stable stratification vary in the literature. Therefore it is necessary to investigate the processes influencing the air-sea exchange of water vapour and heat in order to estimate these values. With measurements from a tower and a directional waverider buoy at the site Östergarnsholm in the Baltic Sea, data used in this study have been sampled from the years 2005-2007. This site represents open-ocean conditions during most situations when the wind comes from the south-east sector. The neutral exchange coefficients, CEN and CHN, have been calculated along with the non-dimensional profile functions for temperature and wind to study the dependence of stability and other parameters of relevance.</p><p>It was found that CEN increased slightly with wind speed and reached a mean value of approximately 1.45×10-3. The highest values of CEN were observed during near neutral conditions and low wave ages. CHN attained a mean value of approximately 0.77×10-3 and did not show any relation to wind speed or to wave age. No significant dependence with wind or wave direction could be shown for either CEN or CHN in the sector 80-220°. The stability correction, performed to reduce the dependence on stratification for CEN and CHN, was well performed for stabilities higher than 0.15. The stability is represented by a relationship between the height and the Obukhov-length (z/L).</p><p>Validity of the non-dimensional profile functions for temperature and wind showed that, for smaller stabilities, these functions gave higher values than the corresponding functions recommended by Högström (1996). The profile funtions for temperature was shown to have a larger scatter while the profile functions for wind was less scattered and deviated more from the functions given by Högström</p> / <p>Kunskap om turbulenta flöden i det marina gränsskiktet är viktigt för att förstå växelverkan mellan atmosfär och hav. Med bättre kunskap kan förbättringar i bestämningen av utbyteskoefficienterna för latent och sensibelt värme erhållas. Det medför att modeller kan prognostisera väder och framtida klimat med högre noggrannhet.</p><p>Utbyteskoefficienterna för latent och sensibelt värme har för stabil skiktning olika värden i litteraturen. Detta gör det nödvändigt att undersöka de processer som påverkar utbytet av vattenånga och värme mellan luft och hav för att kunna bestämma dessa värden. Data som har använts i den här studien insamlades mellan år 2005 och 2007 från en boj och ett torn vid mätplatsen Östergarnsholm i Baltiska havet. För det flesta situationer, när vinden blåser från syd-ost, representerar mätplatsen ett förhållande likvärdigt det över öppet hav. De neutrala utbyteskoefficienterna, CEN och CHN, och de dimensionslösa profilfunktionera för temperatur och vind, och , har beräknats för att studera beroendet av stabilitet samt andra relevanta parametrar.</p><p>Beräkningarna visade att CEN ökade något med vindhastighet och hamnade på ett medelvärde av ungefär 1.45×10-3. De högsta värdena på CEN observerades vid nära neutrala förhållanden och låga vågåldrar. CHN uppmättes till att ha ett medelvärde på ungefär 0.77×10-3 och uppvisade inget beroende med vindhastighet eller vågålder. Inget märkbart beroende med vind- eller vågriktning kunde visas för CEN eller CHN i sektorn 80-220°. Stabilitetskorrektionen, utförd för att reducera beroendet av atmosfärens skiktning för CEN och CHN, var bra för stabiliteter högre än 0.15. Stabiliteten representeras av förhållandet mellan höjden och Obukhov-längden (z/L).</p><p>Utvärdering av de dimensionslösa funktionerna för temperatur och vind visade att dessa funktioner, för små stabiliteter, gav högre värden än motsvarande funktioner som rekommenderas av Högström (1996). Värdena på profilfunktionerna för temperatur hade större spridning än värdena på profilfunktionerna för vind och avvek mer från funktionerna givna av Högström.</p>
78

Fluxes of Sensible and Latent Heat and Carbon Dioxide in the Marine Atmospheric Boundary Layer

Sahlée, Erik January 2007 (has links)
<p>Oceans cover about 70% of the earth’s surface. They are the largest source of the atmospheric water vapour and act as enormous heat reservoirs. Thus in order to predict the future weather and climate it is of great importance to understand the processes governing the exchange of water vapour and heat between the ocean and atmosphere. This exchange is to a large extent mediated by turbulent eddies. Current numerical climate and weather forecast models are unable to resolve the turbulence, which means that the turbulent exchange needs to be simplified by using parameterizations. </p><p>Tower based measurements at the Östergarnsholm Island in the Baltic Sea have been used to study the air-sea turbulent exchange of latent and sensible heat and the heat flux parameterizations. Although the measurements are made at an island, data obtained at this site is shown to represent open ocean conditions during most situations for winds coming from the east-south sector. It is found that during conditions with small air-sea temperature differences and wind speeds above 10 m s<sup>-1</sup>, the structure of the turbulence is re-organized. Drier and colder air from aloft is transported to the surface by detached eddies, which considerably enhance the turbulent heat fluxes. The fluxes where observed to be much larger than predicted by current state-of-the-art parameterizations. The turbulence regime during these conditions is termed the Unstable Very Close to Neutral Regime, the UVCN-regime.</p><p>The global increase of the latent and sensible heat fluxes due to the UVCN-regime is calculated to 2.4 W m<sup>-2</sup> and 0.8 W m<sup>-2</sup> respectively. This is comparable to the current increase of the radiative forcing due to anthropogenic emissions of greenhouse gases, reported in Intergovernmental Panel on Climate Change fourth assessment report (IPCC AR4). Thus the UVCN-effect could have a significant influence when predicting the future weather and climate.</p>
79

Fluxes of Sensible and Latent Heat and Carbon Dioxide in the Marine Atmospheric Boundary Layer

Sahlée, Erik January 2007 (has links)
Oceans cover about 70% of the earth’s surface. They are the largest source of the atmospheric water vapour and act as enormous heat reservoirs. Thus in order to predict the future weather and climate it is of great importance to understand the processes governing the exchange of water vapour and heat between the ocean and atmosphere. This exchange is to a large extent mediated by turbulent eddies. Current numerical climate and weather forecast models are unable to resolve the turbulence, which means that the turbulent exchange needs to be simplified by using parameterizations. Tower based measurements at the Östergarnsholm Island in the Baltic Sea have been used to study the air-sea turbulent exchange of latent and sensible heat and the heat flux parameterizations. Although the measurements are made at an island, data obtained at this site is shown to represent open ocean conditions during most situations for winds coming from the east-south sector. It is found that during conditions with small air-sea temperature differences and wind speeds above 10 m s-1, the structure of the turbulence is re-organized. Drier and colder air from aloft is transported to the surface by detached eddies, which considerably enhance the turbulent heat fluxes. The fluxes where observed to be much larger than predicted by current state-of-the-art parameterizations. The turbulence regime during these conditions is termed the Unstable Very Close to Neutral Regime, the UVCN-regime. The global increase of the latent and sensible heat fluxes due to the UVCN-regime is calculated to 2.4 W m-2 and 0.8 W m-2 respectively. This is comparable to the current increase of the radiative forcing due to anthropogenic emissions of greenhouse gases, reported in Intergovernmental Panel on Climate Change fourth assessment report (IPCC AR4). Thus the UVCN-effect could have a significant influence when predicting the future weather and climate.
80

The Behaviour of the Latent Heat Exchange Coefficient in the Stable Marine Boundary Layer

Lindgren, Kristina January 2008 (has links)
Knowledge of the turbulent fluxes at the sea surface is important for understanding the interaction between atmosphere and ocean. With better knowledge, improvements in the estimation of the heat exchange coefficients can be made and hence models are able to predict the weather and future climate with higher accuracy. The exchange coefficients of latent and sensible heat during stable stratification vary in the literature. Therefore it is necessary to investigate the processes influencing the air-sea exchange of water vapour and heat in order to estimate these values. With measurements from a tower and a directional waverider buoy at the site Östergarnsholm in the Baltic Sea, data used in this study have been sampled from the years 2005-2007. This site represents open-ocean conditions during most situations when the wind comes from the south-east sector. The neutral exchange coefficients, CEN and CHN, have been calculated along with the non-dimensional profile functions for temperature and wind to study the dependence of stability and other parameters of relevance. It was found that CEN increased slightly with wind speed and reached a mean value of approximately 1.45×10-3. The highest values of CEN were observed during near neutral conditions and low wave ages. CHN attained a mean value of approximately 0.77×10-3 and did not show any relation to wind speed or to wave age. No significant dependence with wind or wave direction could be shown for either CEN or CHN in the sector 80-220°. The stability correction, performed to reduce the dependence on stratification for CEN and CHN, was well performed for stabilities higher than 0.15. The stability is represented by a relationship between the height and the Obukhov-length (z/L). Validity of the non-dimensional profile functions for temperature and wind showed that, for smaller stabilities, these functions gave higher values than the corresponding functions recommended by Högström (1996). The profile funtions for temperature was shown to have a larger scatter while the profile functions for wind was less scattered and deviated more from the functions given by Högström / Kunskap om turbulenta flöden i det marina gränsskiktet är viktigt för att förstå växelverkan mellan atmosfär och hav. Med bättre kunskap kan förbättringar i bestämningen av utbyteskoefficienterna för latent och sensibelt värme erhållas. Det medför att modeller kan prognostisera väder och framtida klimat med högre noggrannhet. Utbyteskoefficienterna för latent och sensibelt värme har för stabil skiktning olika värden i litteraturen. Detta gör det nödvändigt att undersöka de processer som påverkar utbytet av vattenånga och värme mellan luft och hav för att kunna bestämma dessa värden. Data som har använts i den här studien insamlades mellan år 2005 och 2007 från en boj och ett torn vid mätplatsen Östergarnsholm i Baltiska havet. För det flesta situationer, när vinden blåser från syd-ost, representerar mätplatsen ett förhållande likvärdigt det över öppet hav. De neutrala utbyteskoefficienterna, CEN och CHN, och de dimensionslösa profilfunktionera för temperatur och vind, och , har beräknats för att studera beroendet av stabilitet samt andra relevanta parametrar. Beräkningarna visade att CEN ökade något med vindhastighet och hamnade på ett medelvärde av ungefär 1.45×10-3. De högsta värdena på CEN observerades vid nära neutrala förhållanden och låga vågåldrar. CHN uppmättes till att ha ett medelvärde på ungefär 0.77×10-3 och uppvisade inget beroende med vindhastighet eller vågålder. Inget märkbart beroende med vind- eller vågriktning kunde visas för CEN eller CHN i sektorn 80-220°. Stabilitetskorrektionen, utförd för att reducera beroendet av atmosfärens skiktning för CEN och CHN, var bra för stabiliteter högre än 0.15. Stabiliteten representeras av förhållandet mellan höjden och Obukhov-längden (z/L). Utvärdering av de dimensionslösa funktionerna för temperatur och vind visade att dessa funktioner, för små stabiliteter, gav högre värden än motsvarande funktioner som rekommenderas av Högström (1996). Värdena på profilfunktionerna för temperatur hade större spridning än värdena på profilfunktionerna för vind och avvek mer från funktionerna givna av Högström.

Page generated in 0.019 seconds