• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 9
  • 7
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 74
  • 74
  • 24
  • 20
  • 19
  • 18
  • 16
  • 14
  • 12
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Heat-pipes in electric machines : Heat management in electric traction motors

Olofsson, Anton January 2022 (has links)
The world is continually changing towards more energy efficient alternatives and less pollution. For the traction market, electric powertrains have become the go-to method, superior to both steam and diesel-electric hybrid systems. For subways and trams the natural development now is towards smaller motors with high power output, the goal is to use as much space as possible for the passengers and keep the performance of a larger motor setup. One problem with increasing the power density of the motors is that the accumulated heat from losses also increases per volume. All motors have different efficiency and different limits on temperatures in different parts. For this project a closed, self-ventilated traction motor with axis height 250mm (CSV250) was evaluated. The motor has an input power just above 140kW and the identified limiting factor is the temperature of the bearings, specifically the front bearing located at the fan side of the motor.   An already existing and partly validated ANSYS MotorCAD model was used for full system overview and as a guide to build a COMSOL Multiphysics model of the motor rotor. The COMSOL model could be effectively changed to represent different configurations of the solution. The COMSOL solver is based on the finite element method, FEM, whereas the MotorCAD model is built as a thermal network with lumped parameter method, LPM.    The proposed solution to the high temperature is implementation of heat-pipes in strategic positions. This project only contains evaluation of heat-pipes positioned in the center of the shaft deployed in three different configurations: a short heat-pipe transferring heat from the bearing to the fan, a long heat-pipe transferring heat from the active rotor parts to the fan and a long heat-pipe similar to previous case but with the heat-pipe insulted at the bearing section. The simulations yield performance specifications for the solution design that will give the expected result, complemented with theory this can then give the full appliable solution to the specified problem.   For the short heat-pipe case a decrease in temperature form 116.5 to 96.5°C was achieved in the front bearing by increasing the heat-transfer from the bearing towards the fan with 84.4W. This is well under the preferred temperature of maximum 110°C. In the long heat-pipe case a total of 360W was dispersed through the fan and this lowered the highest temperature point in the rotor from 172.2 to 160.8°C but with the negative effect of increasing the temperature of the front bearing. In the third case the insulation of the long heat-pipe in the bearing section managed to lower this increased temperature from 130.4 to 122.4°C while 360W were still transferred through to the fan. This is under the absolute maximum at 130°C but over 110°C. The results point towards the possibility to increase power density and keeping temperatures manageable using heat-pipes but further work and experiments is needed to prov the concept.
12

Modelling and simulation of two-phase closed thermosyphones using two-fluid method

Kafeel, Khurram January 2014 (has links)
Computational Fluid Dynamics (CFD) has become one of the main instruments for the prediction of many commercial and research oriented fluid flow and heat transfer problems. While single phase flow analysis through CFD has gained grounds within the commercial industry, multiphase flow analysis is still the subject of further research and development. Heat Pipes and thermosyphones are no exception to this. However, the involvement of more than one fluid phase within these devices has made their analysis through CFD more challenging and computationally more demanding to perform. In this thesis, computational fluid dynamics is used as a modelling tool in order to predict the thermal hydraulic behaviour of multiphase environment within thermosyphones and heat pipes. Eulerian two-fluid method is used to solve the conservation equations for mass, momentum and energy, for each phase along with the inclusion of interfacial heat and mass transfer terms. Numerical predictions are obtained for the steady-state and transient operation of stationary thermosyphon, while rotating heat pipes operation is also simulated using axially and radially rotating heat pipe models. Apart from using the commercially available CFD code for the analysis of thermosyphones related simulation, numerical work is performed regarding the coupling of momentum equations based on Eulerian two-fluid modelling scheme. OPENFOAM open source code is used and modified to include the Partial Elimination Algorithm (PEA) for the coupling of interfacial exchange terms, including interfacial mass transfer term, in the momentum equations of both phases. Results obtained from above discussed studies provide good agreement with corresponding experimental and analytical observations.
13

Design and Experimental Analysis of a Loop Heat Pipe for Thermal Control of Aircraft Engine Equipment / Conception et analyse expérimentale d'une boucle diphasique passive LHP pour le contrôle thermique des composants intégrés dans les moteurs aéronautiques

Pagnoni, Filippo 11 April 2019 (has links)
Ces travaux de thèse sont focalisés sur le développement d’une boucle diphasique LHP pour le contrôle thermique de composants intégrés dans les moteurs aéronautiques. L’étude concerne les compartiments situés à l’intérieur de la nacelle, en lien avec les challenges thermiques des moteurs de future génération. Tout d’abord, une étude de faisabilité a été menée, basée sur une évaluation de l’environnement thermique, une analyse des contraintes d’intégration et une première identification d’un couple fluide de travail-matériau de construction. En ce qui concerne ce dernier aspect, l’eau et le DowthermTM J ont été identifiés comme les meilleurs candidats pour leur utilisation avec les alliages souhaités pour cet environnement. D’un côté, le point triple élevé de l’eau a obligé la vérification de la tenue mécanique du milieu capillaire mouillé à des cycles de gel/dégel. Le milieu poreux fritté en titane a montré une excellente résistance mécanique et il est resté parfaitement intact après plus de 1500 cycles. D’un autre côté, vu le manque d’informations concernant la compatibilité du DowthermTM J avec les matériaux sélectionnés, des tests de compatibilité ont été effectués avec trois thermosiphons en parallèle, et ont montré un taux de génération de gaz non condensables déjà à faible température. Pour cette raison, la compatibilité entre le DowthermTM J et les matériaux a été jugé non satisfaisante et le fluide a été rejeté. L’étape suivante a été la conception d’un prototype de boucle LHP. Des outils numériques robustes ont été développés pour la validation finale : un modèle 0D pour la boucle entière ainsi qu’un modèle couplé 1D - 2D du condenseur. Le prototype de LHP a été construit et testé sous différentes conditions opératoires. Une quantité de gaz non condensable a été observée initialement, due à la passivation des surfaces intérieures à la boucle. Néanmoins, les résultats expérimentaux ont montré que la boucle répond aux cahiers de charge thermique, même en présence de ces gaz,étant capable de fonctionner sous hautes températures et haute pression. La génération de gaz s’est arrêtée après un certain nombre d’heures cumulées de fonctionnement ; pourtant, les inspections internes à l’évaporateur après les tests ont montrés une dégradation significative de l’état de surface, due aux réactions chimiques entre le fluide de travail et les matériaux de la boucle. Les résultats de ces travaux de thèse constituent une étape fondamentale vers le développement d’une boucle LHP pour le contrôle thermique de composants intégrés dans la nacelle. Des informations essentielles à la conception des prototypes de future génération sont fournies, vers la validation et la certification des LHP pour leur utilisation dans cet environnement. / In this work, the development of a Loop Heat Pipe (LHP) for aircraft nacelle thermal management is presented. The study is focused on engine compartments and integrated equipment applications, according to the upcoming thermal management challenges in the next generation of engines. First, a feasibility study was performed, analyzing the thermal environment, the integration constraints and the identification of suitable working fluid construction material pairs. As for the latter aspect, water and DowthermTM J were identified as most suitable candidates with the lightweight aeronautical alloys considered for this environment. On one hand, the high triple point of water obliged to verify the wick mechanical resistance to repeated freezing cycles when soaked into pure water. On the other hand, compatibility tests were performed between DowthermTM J and the selected alloys, due to the lack of related data. In the former, the sintered titanium wick provided an excellent stiffness and it remained perfectly intact after more than 1500 cycles. In the latter, the thermal tests performed on parallel thermosyphon shave clearly shown the generation of non-condensable gases (NCG) inside all the samples starting from low operating temperatures. As a result, the compatibility of DowthermTM J was considered not fully satisfactory and this fluid was discarded. The next step concerned the design of the titanium/water LHP prototype. Robust numerical tools were developed for the final design validation: a simplified 0D nodal model for the entire device and a coupled 1D and 2D condenser model representation. The LHP prototype was manufactured and tested in different operating conditions. A significant amount of NCG was initially generated inside the device, due top assivation of the internal surfaces. Nonetheless, the experimental results demonstrated the LHP capability to satisfy the thermal requirements, even in presence of NCG, with standing high operating temperatures and pressures. Although the gas generation rate became negligible after several hours of tests, internal inspections performed at the end of the test revealed a deep alteration of the internal surface state, due to the chemical reactions with the working fluid. The results of this work represent an important milestone for the development of a LHP for aircraft nacelle applications. Essential information for the design of future generations of prototypes are provided, toward the validation and certification of LHP for nacelle thermal management.
14

The Design, Fabrication and Performance Analysis of a Flexible Heat Pipe

Yang, Ya-ju 21 August 2012 (has links)
This experiment produces a new flexible heat pipe, and further tests and explores its characteristics and performance. The heat pipe is made of silicone rubber, a kind of polymer material, and was molded by hot embossing. Characteristics of this material include good bending resistance, lightness, and good resistance to high temperature. Furthermore, copper sheets connected with silicone were placed at the evaporator section and condenser section to enhance heat transfer effects. DI water in the pipe was used as the working medium, and two-layer 250 mesh copper nets were used as a wick to strengthen the heat pipe¡¦s capillary effects. The researcher set the vacuum degree at 0.0658 atm to test the pipe¡¦s performances at different powers. Key findings include an optimum filling ratio of 40%, and a largest heat flux of 11.75 W/cm2 during the proficiency test. In addition to the proficiency test . The influence of different angles of bends (0 ~ -90¢X) on the pipe¡¦s heat transfer performance was also tested and based on heat thermal resistance obtained, found that the best bended angle of the flexible heat pipe was -15¢X, and thermal resistance will increase with the angle(-30 ~ -90¢X). The experiment proves a small angle bend that is helpful for the working medium to flow back to the evaporator section, but the heat transfer performance would shrink because the wick could not affix to the inner wall of the pipe if the angle is too large. This work shows the proper combination of pipe parameters will significantly improve heat transfer performance.
15

Performance Analysis and Optimization of a Ground Source Heat Pipe with Carbon Dioxide for Thermal Management of Engineered Pavements and Turf

Alhajjaji, Amr Abdurahman 13 July 2022 (has links)
No description available.
16

Modeling the Transient Response of a Thermosyphon

Storey, James Kirk 26 November 2003 (has links) (PDF)
Thermosyphon transient operation was numerically modeled. The numerical model presented in this work overcame the limitations of previous studies by including transient conduction in the vessel wall, shear stress between the rising vapor and the falling film in the thermosyphon, the influence of the mass in the liquid pool in the evaporator, and by using a more refined and accurate numerical grid. Unique to this model was the accounting for temporal changes in the effective length of the vapor space due to the expanding and contracting of non-condensable gases in the vapor space. The model assumed quasi-steady one-dimensional vapor flow, transient one-dimensional flow in the falling liquid film, and transient behavior in the liquid pool in the evaporator. The model also assumed transient two-dimensional conduction in the thermosyphon wall. Using fundamental principles, the governing equations used in the numerical model were developed and then written in finite difference form. The finite difference forms of the governing equations were integrated using an explicit scheme. A sensitivity study was performed and found that the numerical model was accurate to 4%. An experiment was also conducted to validate the numerical model. The experiment used three distinct transient heat loads to simulate gradual, moderate and sharp increases in temperature. The uncertainty of the experiment was shown to be 2.3%. The temperatures from the numerical model were then compared to those measured during the physical experiment to determine the validity of the numerical model. The model was further exercised to develop a useful engineering relationship that can be used to predict the transient performance of a thermosyphon.
17

Design and development of heat pipe heat exchangers

Shrivastava, Mohit 03 May 2019 (has links)
Heat pipe is a passive heat transport device, engineered to harness latent heat of vaporization of contained working fluid to efficiently transfer sensible energy of one fluid stream to another. Heat pipes have observed applications in HVAC, electronics cooling, space equipment cooling, etc. due to their high effective thermal conductivity. Heat pipe heat exchanger (HPHE) employs finned heat pipes for performance enhancement. A mathematical model was developed into a Mathcad based tool for properly sizing and optimizing gravity-assisted HPHE designs. A charging station was setup to fabricate heat pipes under deep vacuum using a liquid nitrogen cold trap. A wind test tunnel was constructed to conduct experiments on a HPHE prototype. The thermal performance testing resulted in 11.4 kW of heat duty with 54% effectiveness of the HPHE. Parametric studies were also conducted for varying input heat and air flow rates, followed by the result comparison with program predictions.
18

Oscillating Heat Spreaders for High Heat Flux Thermal Management

Mahony, Colin Philip 09 December 2016 (has links)
Multiple oscillating heat spreaders (OHS) were fabricated for the purpose of effectively transporting heat fluxes from vehicular electronics. The OHSs possessed modified evaporators for enhanced thermal spreading capabilities; one OHS was designed for pressure shorting, i.e. the ‘Slots OHS’, and the other for thermal shorting, i.e. the ‘Perforated Evaporator OHS’. These OHSs were tested in the axial heating configuration with the evaporator length-wise opposite the condenser, as well as in a centralized heating configuration implemented with the condenser thick-wise opposite the heat source to characterize thermal spreading effectiveness. The condensing location and heat input were varied in the central heating and axial configuration to determine thermal spreading effectiveness dependency to condenser location, heat removal, and heat input. Both OHSs were experimentally compared to an OHS of similar dimensions with no modified evaporator, and the results indicate the modified evaporators improve OHS thermal spreading ability for high heat flux thermal management.
19

Energy Harvesting by Oscillating Heat Pipes

Monroe, John Gabriel 09 December 2016 (has links)
Oscillating heat pipes (OHPs) have been actively investigated since their inception due to their ability to manage high heat/heat fluxes. The OHP is a passive, wickless, two-phase heat transfer device that relies on pressure driven fluid oscillations within a hermetically-sealed serpentine channel structure. The cyclic phase-change heat transfer drives additional sensible heat transfer, and this combination causes OHPs to have high effective thermal conductivities. Many strides have been made, through both experimentation and modeling, to refine the design and implementation of OHPs. However, the main objective in OHP research has been to better understand the thermodynamic and fluid mechanic phenomena so as to enhance OHPs' thermal performance. The current work presents methods for using OHP in thermal-to-electric energy harvesting, which would allow for ‘dual-purpose’ OHP applications in which thermal management can be combined with work output. Energy harvesting occurred when a portion of the thermally-driven fluidic motion was used to generate a voltage either by electromagnetic induction or by a piezoelectric transducer imbedded in an OHP tube. For the induction approach, two methods were used to create the time-varying magnetic field required for induction. In the first, a ferrofluid was used as the OHP working fluid. Because the magnetic dipoles of the nanoparticles are randomly aligned naturally, two static, external ‘bias’ magnets were required to create a uniform magnetic field to align the particle dipoles for a non-zero magnetic flux change through a coaxial solenoid. The second method used a small rare-earth magnet confined inside a set length of an OHP channel that had a coaxial solenoid. As the OHP working fluid moved inside the harvesting channel, a portion of the fluid's momentum was transferred to the magnet, causing it to oscillate. For the piezoelectric approach, a narrow piezoelectric transducer was placed in a bow-shaped configuration along the inside of an OHP channel. Passing fluid would deflect the piezo creating a potential difference across its leads, which protruded out of the channel walls. All three of these methods successfully produced a voltage while retaining the excellent thermal performance synonymous with OHPs.
20

DEVELOPMENT OF A MICRO LOOP HEAT PIPE, A NOVEL MEMS SYSTEM BASED ON THE CPS TECHNOLOGY

SHUJA, AHMED 07 July 2003 (has links)
No description available.

Page generated in 0.0194 seconds