• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 797
  • 226
  • 172
  • 167
  • 151
  • 24
  • 21
  • 16
  • 14
  • 12
  • 10
  • 8
  • 6
  • 4
  • 3
  • Tagged with
  • 2190
  • 2190
  • 568
  • 421
  • 340
  • 323
  • 265
  • 248
  • 233
  • 232
  • 213
  • 210
  • 208
  • 166
  • 162
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Heat transfer of supercritical carbon dioxide in MINI/MICRO tubes /

Liao, Shengming. January 2002 (has links)
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2002. / Includes bibliographical references (leaves 145-150). Also available in electronic version. Access restricted to campus users.
342

An efficient solution procedure for simulating phonon transport in multiscale multimaterial systems

Loy, James Madigan 17 October 2013 (has links)
Over the last two decades, advanced fabrication techniques have enabled the fabrication of materials and devices at sub-micron length scales. For heat conduction, the conventional Fourier model for predicting energy transport has been shown to yield erroneous results on such length scales. In semiconductors and dielectrics, energy transport occurs through phonons, which are quanta of lattice vibrations. When phase coherence effects can be ignored, phonon transport may be modeled using the semi-classical phonon Boltzmann transport equation (BTE). The objective of this thesis is to develop an efficient computational method to solve the BTE, both for single-material and multi-material systems, where transport across heterogeneous interfaces is expected to play a critical role. The resulting solver will find application in the design of microelectronic circuits and thermoelectric devices. The primary source of computational difficulties in solving the phonon BTE lies in the scattering term, which redistributes phonon energies in wave-vector space. In its complete form, the scattering term is non-linear, and is non-zero only when energy and momentum conservation rules are satisfied. To reduce complexity, scattering interactions are often approximated by the single mode relaxation time (SMRT) approximation, which couples different phonon groups to each other through a thermal bath at the equilibrium temperature. The most common methods for solving the BTE in the SMRT approximation employ sequential solution techniques which solve for the spatial distribution of the phonon energy of each phonon group one after another. Coupling between phonons is treated explicitly and updated after all phonon groups have been solved individually. When the domain length is small compared to the phonon mean free path, corresponding to a high Knudsen number ([mathematical equation]), this sequential procedure works well. At low Knudsen number, however, this procedure suffers long convergence times because the coupling between phonon groups is very strong for an explicit treatment of coupling to suffice. In problems of practical interest, such as silicon-based microelectronics, for example, phonon groups have a very large spread in mean free paths, resulting in a combination of high and low Knudsen number; in these problems, it is virtually impossible to obtain solutions using sequential solution techniques. In this thesis, a new computational procedure for solving the non-gray phonon BTE under the SMRT approximation is developed. This procedure, called the coupled ordinates method (COMET), is shown to achieve significant solution acceleration over the sequential solution technique for a wide range of Knudsen numbers. Its success lies in treating phonon-phonon coupling implicitly through a direct solution of all equations in wave vector space at a particular spatial location. To increase coupling in the spatial domain, this procedure is embedded as a relaxation sweep in a geometric multigrid. Due to the heavy computational load at each spatial location, COMET exhibits excellent scaling on parallel platforms using domain decomposition. On serial platforms, COMET is shown to achieve accelerations of 60 times over the sequential procedure for Kn<1.0 for gray phonon transport problems, and accelerations of 233 times for non-gray problems. COMET is then extended to include phonon transport across heterogeneous material interfaces using the diffuse mismatch model (DMM). Here, coupling between phonon groups occurs because of reflection and transmission. Efficient algorithms, based on heuristics, are developed for interface agglomeration in creating coarse multigrid levels. COMET is tested for phonon transport problems with multiple interfaces and shown to outperform the sequential technique. Finally, the utility of COMET is demonstrated by simulating phonon transport in a nanoparticle composite of silicon and germanium. A realistic geometry constructed from x-ray CT scans is employed. This composite is typical of those which are used to reduce lattice thermal conductivity in thermoelectric materials. The effective thermal conductivity of the composite is computed for two different domain sizes over a range of temperatures. It is found that for low temperatures, the thermal conductivity increases with temperature because interface scattering dominates, and is insensitive to temperature; the increase of thermal conductivity is primarily a result of the increase in phonon population with temperature consistent with Bose-Einstein statistics. At higher temperatures, Umklapp scattering begins to take over, causing a peak in thermal conductivity and a subsequent decrease with temperature. However, unlike bulk materials, the peak is shallow, consistent with the strong role of interface scattering. The interaction of phonon mean free path with the particulate length scale is examined. The results also suggest that materials with very dissimilar cutoff frequencies would yield a thermal conductivity which is closest to the lowest possible value for the given geometry. / text
343

Modeling of transport processes for the reduction of energy use in commercial buildings

Clark, Jordan Douglas 11 February 2014 (has links)
Buildings are responsible for over a third of the energy consumption in the United States annually. This energy consumption contributes to some of the most pressing problems facing our society. Modeling of buildings and their systems is an integral part of most strategies for reduction of energy use in buildings. Modeling allows for informed building designs, optimization of systems, and greater market acceptance of new energy-saving technologies. This work addresses two particular modeling applications concerned with reduction of energy usage in buildings: convective heat transfer modeling in perimeter zones, and liquid desiccant dehumidification modeling. The first objective of this work is concerned with modeling convective transport in buildings and creation of inputs for energy modeling programs and passive pollutant removal calculations. This is accomplished through four investigations. In the first investigation, the influence of floor diffusers on convection heat transfer at perimeter zone windows in commercial buildings is measured. In the second, the impact of blinds on convection under a variety of circumstances is quantified. In the third, movement of air jets issuing from floor diffusers is predicted, and the effect of buoyancy on convective heat transfer at perimeter zone surfaces is analyzed. In the fourth investigation, convective mass transfer at indoor surfaces is investigated. Full scale experiments were conducted in support of these four investigations and semi-empirical correlations vii consistent with theory are given to predict jet movement and convective transport under a variety of circumstances. The second objective of this dissertation is concerned with modeling and analysis of liquid desiccant dehumidification systems and is pursued through three additional investigations. The first is concerned with modeling small-scale transport within the channels of a liquid desiccant absorber and regenerator. Physical and empirical models are developed which agree well with laboratory data. During the second investigation, a dynamic model of a liquid desiccant dehumidification system is developed and integrated into a full-building energy simulation. This is used to assess the potential applicability of the system in supermarkets in various climates. The models developed are used to optimize the system and develop a procedure to size components in the final investigation. / text
344

An Experimental Method of Measuring Spectral, Directional Emissivity of Various Materials and Joule Heating

Bickel, Robert 01 January 2015 (has links)
Emissivity is an important parameter in calculating radiative cooling of a surface. In experiments at the NASA Ames hypervelocity ballistic range, one of the main errors indicated in temperature measurements is the uncertainty of emissivity for the materials under investigation. This thesis offers a method for measuring emissivity of materials at elevated temperatures at the University of Kentucky. A test specimen which consists of different sample materials under investigation and a blackbody cavity was heated in a furnace to an isothermal condition at known temperature. The emitted thermal radiation was measured and the comparison of sample and blackbody radiation yielded the desired emissivity. In addition to the furnace measurements, separate experiments were conducted in ambient air to determine how much irradiation is reflected back to the samples from the radiation shield used in the furnace to block undesired ambient radiation. Here, the sample heating was accomplished by applying a direct current across the samples. ANSYS simulations were performed to assist the design and analysis. Experiments were conducted in ambient air and a vacuum environment to verify these simulations.
345

Semi-empirical model of convection heat transfer at windows and blinds near floor diffusers for use in building energy modeling

Clark, Jordan Douglas 20 December 2010 (has links)
Accurate modeling of energy flows in buildings is necessary for optimization of mechanical systems, and architectural designs and components. One specific process which has been studied little is that of forced convection on the interior surfaces of window assemblies, which is present in the majority of newly constructed commercial buildings. To this end, energy flows associated with a specific Heating Ventilation and Air-Conditioning (HVAC) configuration- a floor register near a glass curtain wall with or without Venetian blinds- are analyzed experimentally and partially described with accepted theory. Natural convection at the same surface is analyzed as well, both to establish a baseline and to experimentally validate the experimental setup. A 60 cubic meter environmental chamber with precisely controlled interior conditions and electrical resistance heating panels is employed to study heat transfer at the interior surfaces of a building’s envelope. Convection heat transfer processes for various blind angles, HVAC regimes, surface temperatures, and window sizes are examined. Results show that convection at window and blind surfaces is highly dependent on blind angle, supply temperature and flow rate, moderately dependent on room-supply air temperature difference and HVAC regime, and weakly dependent on surface-supply air temperature difference. A simplified model of convection heat transfer in this particular situation is proposed for easy implementation in energy modeling software. / text
346

Effects of particle concentration and surfactant use in convective heat transfer of CuO nanofluids in microchannel flow

Byrne, Matthew Davidson 17 June 2011 (has links)
Heat exchange systems used in everything from cars to microelectronics have rapidly advanced in recent years to offer high heat transfer rates in increasingly smaller sizes. However, these systems have become essentially optimized using conventional heat transfer fluids. To test the viability of nanofluids as a new heat transfer fluid, an experimental investigation was designed using a constant pressure drop configuration to drive flow into a heated square microchannel test section. The experimental trials included seven different test fluids tested over varying concentrations and surfactant use. Two identical test sections were used to collect results on heat transfer rates, pressure drop, mass flowrate and pumping power for all fluids. These results show a heat transfer improvement for nanofluids of 8-16% over pure water, with no meaningful increase in pumping power. This result is highly desirable, as it indicates an easily obtainable heat transfer improvement without an associated pumping cost increase. Importantly, the experiment shows the potential viability of nanofluids for heat transfer applications, while acknowledging limitations such as long term nanofluid stability. / text
347

MEASUREMENT OF HEAT TRANSFER ENHANCEMENT AND PRESSURE DROP FOR TURBULENCE ENHANCING INSERTS IN LIQUID-TO-AIR MEMBRANE ENERGY EXCHANGERS (LAMEEs)

2014 April 1900 (has links)
The fluid flow channels of modern heat exchangers are often equipped with different flow disturbance elements which enhance the convective heat transfer coefficient in each channel. These structural or surface roughness elements induce enhanced flow mixing and convective heat transfer at low Reynolds numbers (500 < Re < 2200) by fluid mixing near the channel walls and increasing the surface area. These elements, however, are accompanied by higher pressure drops in comparison to hollow smooth channels (without inserts). The Run-Around Membrane Energy Exchanger (RAMEE) system is an air-to-air energy recovery system comprised of two remote liquid-to-air membrane energy exchangers (LAMEEs) coupled by a pumped liquid desiccant loop. LAMEEs use semi-permeable membranes that are permeable to water vapor, but impermeable to liquid water. The membranes separate the liquid desiccant from the air flow channels, while still allowing both heat and water vapor transfer. The air channels are equipped with turbulence enhancing inserts which serve dual purposes: (a) to support the adjacent flexible membranes, and (b) to enhance the convective heat and mass transfer. This research experimentally investigates the increase in the air pressure drop and average convective heat transfer coefficient after an air-side insert is installed in a Small-scale wind tunnel for exchanger insert testing (WEIT) facility that is designed to simulate the air channels of a LAMEE and to measure all the properties required to determine the flow friction factor and Nusselt number. Experiments are conducted in the test section under steady state conditions at Reynolds numbers between 900 and 2200 for a channel with and without inserts. The 500-mm-long test section has a rectangular cross section (5 mm wide and 152.4 mm high) and is designed to maintain a specified constant heat flux on each side wall. The flow is laminar and hydrodynamically fully developed at the entrance of the test section and, within the test section, thermal development occurs. Nine different insert panels are tested. Each insert is comprised of several plastic rib spacers, each aligned parallel to the stream-wise direction, and several cross-bars aligned normal to the flow direction. The plastic rib spacers are placed either 30 mm, 20 mm or 10 mm apart, and the distance between the cylindrical bars is either 30 mm, 45 mm, 60 mm or 90 mm. The measured convective heat transfer coefficient and the friction factor have uncertainties that are less than ±7% and ±11%, respectively. It is found that the Nusselt number and friction factor are dependent on the insert geometry and the Reynolds number. An empirical correlation is developed for the inserts to predict Nusselt number and friction factor within an air channel of a LAMEE. The correlations are able to determine the Nusselt number and the friction factor within ±9% and ±20% of the experimental data. Results show the flow insert bar spacing is the most important factor in determining the convective heat transfer improvement. As an application of the experimental data in this thesis, the experimental and the numerical results from a LAMEE which has an insert in each airflow channel are presented. The results show that the insert within the air channel of the LAMEE is able to improve the total effectiveness of the LAMEE by 4% to 15% depending on the insert geometry and air flow Reynolds number and operating inlet conditions for the exchanger.
348

Determination of the Thermal Conductance of Thermal Interface Materials as a Function of Pressure Loading

Sponagle, Benjamin 15 August 2012 (has links)
This thesis presents an experimental apparatus and methodology for measuring the interface conductance of thermal interface materials (TIMs) as a function of clamping pressure. The experimental apparatus is a steady state characterization device based on the basic premise presented in ASTM D5470 – 06. The setup is designed to develop an approximately one dimensional heat transfer through a TIM sample which is held between two meter bars. The temperature is measured along the meter bars using resistance temperature detectors (RTDs) and the temperature drop across the interface is extrapolated from these measurements and then used to calculate the conductance of the interface. This setup and methodology was used to characterize six commercial TIMs at pressures ranging from 0.17-2.76 MPa (25-400 psi). These TIMs included: Tgrease 880, Tflex 720, Tmate 2905c, Tpcm HP105, Cho-Therm 1671, and Cho-Therm T500. The measured conductance values for the various tests ranged from 0.19 to 5.7 W/cm2K. A three dimensional FEA model of the experimental setup was created in COMSOL Multiphysics 4.2a. This model was compared to the experimental data for a single data point and showed good correlation with the measured temperatures and conductance value.
349

Energy storage in phase change materials in cylindrical containers

Menon, Anilkumar S. January 1981 (has links)
No description available.
350

燃料を添加した部分予混合雰囲気中の可燃性固体の燃え拡がり

山本, 和弘, YAMAMOTO, Kazuhiro, 瀬尾, 哲, SEO, Satoshi, 森, 幸一, MORI, Koichi, 小沼, 義昭, ONUMA, Yoshiaki 08 1900 (has links)
No description available.

Page generated in 0.0677 seconds