Spelling suggestions: "subject:"heattransfer"" "subject:"datatransfer""
481 |
Comparison of the Thermal Performance of Several Tip Cooling Designs for a Turbine BladeChristophel, Jesse Reuben 08 October 2003 (has links)
Gas turbine blades are subject to harsh operating conditions that require innovative cooling techniques to insure reliable operation of parts. Film-cooling and internal cooling techniques can prolong blade life and allow for higher engine temperatures. This study examines several unique methods of cooling the turbine blade tip. The first method employs holes placed directly in the tip which inject coolant onto the blade tip. The second and third methods used holes placed on the pressure side of a blade near the tip representative of two different manufacturing techniques. The fourth method is a novel cooling technique called a microcircuit, which combines internal convection and injection from the pressure side near a turbine blade tip. Wind tunnel tests are used to observe how effectively these designs cool the tip through adiabatic effectiveness measurements and convective heat transfer measurements. Tip gap size and blowing ratio are varied for the different tip cooling configurations.
Results from these studies show that coolant injection from either the tip surface or from the pressure side near the tip are viable cooling methods. All of these studies showed better cooling could be achieved at small tip gaps than large tip gaps. The results in which the two different manufacturing techniques were compared indicated that the technique producing more of a diffused hole provided better cooling on the tip.
When comparing the thermal performance of all the cooling schemes investigated, the added benefit of the internal convective cooling shows that the microcircuit outperforms the other designs. / Master of Science
|
482 |
FEM and CFD Co-simulation Study of a Ventilated Disc Brake Heat TransferTang, Jinghan, Qi, Hong Sheng January 2013 (has links)
yes / This paper presents a two-way thermally-coupled FEM-CFD co-simulation method for ventilated brake disc rotor heat transfer analysis. Using a third party coupling interface for data mapping and exchange, the FEM and CFD models run simultaneously under a standard heavy duty braking test condition. By comparison with conventional one-way coupling methods and experimental results, the performance of the co-simulation system has been investigated in terms of prediction of the heat transfer coefficient (HTC) and disc temperatures as well as computing time used. The results illustrate that this co-simulation method has good capacity in providing cooling effect and temperature predictions. It also shows that the data exchange between the FEM and CFD codes at every time increment is highly accurate and efficient throughout 10 brake applications. It can be seen that the cosimulation method is more time efficient, convenient and robust compared to previous oneway coupling methods. To utilize the potential of this method, future works are proposed.
|
483 |
Experimental and Computational Study of Heat Transfer on a Turbine Blade Tip with a ShelfMorris, Angela 13 June 2005 (has links)
Cooling of turbine parts in a gas turbine engine is necessary for operation as the temperature of combustion gases is higher than the melting temperature of the turbine materials. The gap between rotating turbine blades and the stationary shroud provides an unintended flow path for hot gases. Gases that flow through the tip region cause pressure losses in the turbine section and high heat loads to the blade tip. This thesis studies the heat transfer on an innovative tip geometry intended to help reduce aerodynamic losses. The blade tip has a depression (shelf) on the tip surface along much of the pressure side of the blade and film-cooling holes along the depression. This research experimentally measured the effect of the shelf, coolant flow and tip gap on heat transfer on the blade tip.
Stationary experiments were performed in a low speed wind tunnel on a linear cascade with two different tip gaps and multiple coolant flow rates through the film-cooling holes. Tests showed that baseline Nusselt numbers on the tip surface were reduced with the shelf tip compared with a flat tip. Measurements indicated that film-cooling was more effective with a small tip gap than with a large tip gap. Experimental and computational results demonstrated a lack of coolant spreading that was detrimental to regions between the film-cooling holes. While the coolant was effective on the blade tip, the leading and trailing edge regions were found to have high heat transfer coefficients with little available cooling. / Master of Science
|
484 |
Macroscopic convection in the thin-film processorHunter, Kim R. 13 October 2010 (has links)
The thesis explores the proposal that macroscopic fluid convection in thin-film processors may be adequately represented by simple linear deterministic models. In addition, it examines the suggestion that the models themselves provide a useful tool in the search for a generalizable 'intrinsic' process heat transfer film coefficient, i.e., one that includes the effects of axial dispersion of the process fluid. Such a parameter would be helpful in the design and scale up of thin-film equipment.
The following approach was used to investigate this proposal: first, experimental fluid residence time distributions were obtained t over a range of operating conditions, using an industrial pilot plant thin -film processor. The experimental data were used to select an appropriate linear fluid flow model for the process. The model parameters were evaluated over this range using frequency response techniques. These models were subsequently incorporated into a numerical heat transfer simulation of the thin -film processor. Careful matching of the pilot plant transient temperature responses to those predicted by the simulation yielded the sought after intrinsic (dispersion corrected) heat transfer film coefficients for the processor. / Master of Science
|
485 |
A Study of Immersed Boundary Method in a Ribbed Duct for the Internal Cooling of Turbine BladesHe, Long 02 February 2015 (has links)
In this dissertation, Immersed Boundary Method (IBM) is evaluated in ribbed duct geometries to show the potential of simulating complex geometry with a simple structured grid. IBM is first investigated in well-accepted benchmark cases: channel flow and pipe flow with circular cross-section. IBM captures all the flow features with very good accuracy in these two cases. Then a two side ribbed duct geometry is test using IBM at Reynolds number of 20,000 under fully developed assumption. The IBM results agrees well with body conforming grid predictions. A one side ribbed duct geometry is also tested at a bulk Reynolds number of 1.5⨉10⁴. Three cases have been examined for this geometry: a stationary case; a case of positive rotation at a rotation number (Ro=ΩDₕ/U) of 0.3 (destabilizing); and a case of negative rotation at Ro= -0.3 (stabilizing). Time averaged mean, turbulent quantities are presented, together with heat transfer. The overall good agreement between IBM, BCG and experimental results suggests that IBM is a promising method to apply to complex blade geometries. Due to the disadvantage of IBM that it requires large amount of cells to resolve the boundary near the immersed surface, wall modeled LES (WMLES) is evaluated in the final part of this thesis. WMLES is used for simulating turbulent flow in a developing staggered ribbed U-bend duct. Three cases have been tested at a bulk Reynolds number of 10⁵: a stationary case; a positive rotation case at a rotation number Ro=0.2; and a negative rotation case at Ro=-0.2. Coriolis force effects are included in the calculation to evaluate the wall model under the influence of these effects which are known to affect shear layer turbulence production on the leading and trailing sides of the duct. Wall model LES prediction shows good agreement with experimental data. / Master of Science
|
486 |
Determination of Temperature-dependent Thermophysical Properties during Rapid Solidification of Metallic AlloysBasily, Remon January 2024 (has links)
Recent global efforts have focused on developing new lightweight alloys specifically designed for high-pressure die casting (HPDC) processes, aiming to achieve the lightweight of electrified vehicles. HPDC offers a distinct advantage by allowing the production of neat-net-shape automotive components, minimizing the need for further processing. An inherent characteristic of HPDC is its rapid cooling rates, making the understanding and characterization of the thermophysical properties of these newly developed lightweight alloys under high cooling rates a must. These properties have a significant effect on controlling the HPDC process and developing suitable filling and solidification models to simulate the HPDC process intricacies for commercial production adaptation. The thermophysical properties of these alloys are shown to exhibit considerable variability with temperature, particularly under rapid solidification conditions, like in HPDC. Hence, an essential step in developing such alloys is to thoroughly investigate the variation of their thermophysical properties with temperature under high cooling rates.
To fulfill such a need, an experimental setup has been developed to allow the solidification of molten metal samples under varying cooling rates using a set of impinging water jets. An inverse heat transfer algorithm has been developed to estimate the thermal conductivity and thermal diffusivity as a function of the temperature of the solidifying samples under high cooling rates.
To validate the accuracy of the inverse heat transfer algorithm and the experimental methodology, a set of experiments has been carried out using pure Tin, which is a well-characterized material. Its thermal diffusivity and thermal conductivity are readily available in the literature. The estimated thermal diffusivity and thermal conductivity of Tin have been compared with the published data. The estimated thermal diffusivity and conductivity of the solid phase were in good agreement with the published values. A maximum deviation ranging from +10.1% to -3.47% was observed in the estimated thermal diffusivity. The maximum deviation in the estimated thermal conductivity was between +7.8% and -13.6%. Higher deviations have been observed in the estimated thermal diffusivity and conductivity of the liquid phase with deviations in the range of +33.71% to -4.86% and +0.76% to 26.53%, respectively. The higher deviations observed for the liquid phase might be attributed due to the natural convection that developed in the tested liquid sample. The effect of natural convection was examined using a set of numerical simulations that confirmed the existence of a convection-induced movement within the liquid phase.
A sensitivity analysis was carried out to examine the impact of the accuracy of thermocouple positions and the effect of temperature sensing accuracy on the estimated thermal properties. / Thesis / Master of Applied Science (MASc) / An inverse heat transfer algorithm along with an experimental setup has been developed to estimate the temperature-dependant thermophysical properties during solidification of metallic alloys under high cooling rates. To verify the accuracy of the developed algorithm and the experimental setup the estimated thermal conductivity and diffusivity of pure Tin have been compared with data available in the literature. The results showed reasonable agreement.
|
487 |
Control of Nanoscale Thermal Transport for Thermoelectric Energy Conversion and Thermal RectificationPal, Souvik 18 December 2013 (has links)
Materials at the nanoscale show properties uniquely different from the bulk scale which when controlled can be utilized for variety of thermal management applications. Different applications require reduction, increase or directional control of thermal conductivity. This thesis focuses on investigating thermal transport in two such application areas, viz., 1) thermoelectric energy conversion and 2) thermal rectification. Using molecular dynamics simulations, several methods for reducing of thermal conductivity in polyaniline and polyacetylene are investigated. The reduction in thermal conductivity leads to improvement in thermoelectric figure of merit. Thermal diodes allow heat transfer in one direction and prevents in the opposite direction. These materials have potential application in phononics, i.e., for performing logic calculations with phonons. Rectification obtained with existing material systems is either too small or too difficult to implement. In this thesis, a more useful scheme is presented that provides higher rectification using a single wall carbon nanotube (SWCNT) that is covalently functionalized near one end with polyacetylene (PA). Although several thermal diodes are discussed in literature, more complex phononic devices like thermal logic gates and thermal transistors have been sparingly investigated. This thesis presents a first design of a thermal AND gate using asymmetric graphene nanoribbon (GNR) and characterizes its performance. / Ph. D.
|
488 |
The relation of bed depth, particle density, and particle size to the local coefficients of heat transfer of internally-heated fluidized beds of solidsHerron, Richard E. January 1953 (has links)
The variation of the local coefficients of heat transfer with bed depth, particle density, and particle size were studied using a pyrex pipe four inches in diameter as the fluidizing vessel. The fluidized solids investigated were aerocat cracking catalyst, having a geometric-mean particle diameter of 0.00262 inch and an absolute density of 136.6 pounds per cubic foot; tabular alumina, having a geometric-mean particle diameter of 0.0138 inch and an absolute density of 238.8 pounds per cubic foot; silica gel, having a geometric-mean particle diameter of 0.0187 inch and an absolute density of 135.1 pounds per cubic foot; and superbrite glass beads, having a geometric-mean particle diameter of 0.0138 inch and an absolute particle density of 179.5 pounds per cubic foot. The heating element was a 230-vo1t, 1750-watt, copper-sheathed rod having a diameter of 0.25 inch. Temperature measurements were made with 20 B and S gage, iron-constantan thermocouples insulated with fiber-glass braid over glass wrap. Air varying in temperature from 80 to 85 °F and in humidity from 0.000 to 0.004 pound of water vapor per pound of dry air was used as the fluidizing medium. / Master of Science
|
489 |
Heat transfer from a spherical surface by jet impingement: an experimental studySchaeffler, Norman W. January 1988 (has links)
Methods for the removal of heat from a sphere, via jet impingement by single and multiple jets was documented experimentally. Average heat transfer rates from a sphere maintained at constant temperature, by means of an internal electronic heater, and subjected to single or multiple jet impingements were obtained and related to the exit conditions of the impinging air jet(s) and to geometric parameters. The heat transfer rate was found to be insensitive to small changes in geometry. The heat transfer rate was found to increase with an increase in mass flow rate. The impingement of two jets was found not to be as efficient as a single jet using the same mass flow rate. Compressibility was found to decrease the heat transfer rate at high values of the Mach number. Attempts to increase the heat transfer rate by increasing the entrainment of the jet by acoustic or mechanical excitation or by the use of an elliptic orifice meet with no success. The decrease in velocity due to the increase in entrainment cancelled any benefit that was gained by increasing the entrainment of the jet. / Master of Science
|
490 |
Convection Calibration of Schmidt-Boelter Heat Flux Gages in Shear and Stagnation Air FlowHoffie, Andreas Frank 23 May 2007 (has links)
This work reports the convection calibration of Schmidt-Boelter heat flux gages in shear and stagnation air flow. The gages were provided by Sandia National Laboratories and included two one-inch diameter and two one-and-one-half-inch diameter Schmidt-Boelter heat flux gages. In order to calibrate the sensors a convection calibration facility has been designed, including a shear test stand, a stagnation test stand, an air heater and a data acquisition system. The current physical model for a combined radiation and convection heat transfer environment uses an additional thermal resistance around the heat flux gage. This model clearly predicts a non-linear dependency of the gage sensitivity over a range of heat transfer coefficients. A major scope of this work was to experimentally verify the relation found by the model assumptions. Since the actual heat sink temperature is not known and cannot be measured, three different cases have been examined resulting in three different sensitivities for one pressure value, which is the gage sensitivity for the not cooled case and the gage sensitivity for the cooled case, based on the plate temperature or on the cooling water temperature. All of the measured sensitivities for shear as well as for stagnation flow fit well in the theory and show the non-linear decay for increasing heat transfer coefficient values. However, the obtained data shows an offset in the intersection with the sensitivity at zero heat transfer coefficient. This offset might arise from different radiation calibration techniques and different surface coatings of test gage and reference standard. / Master of Science
|
Page generated in 0.0785 seconds