• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computing VaR via Nonlinear AR model with heavy tailed innovations

Li, Ling-Fung 28 June 2001 (has links)
Many financial time series show heavy tail behavior. Such tail characteristic is important for risk management. In this research, we focus on the calculation of Value-at-Risk (VaR) for portfolios of financial assets. We consider nonlinear autoregressive models with heavy tail innovations to model the return. Predictive distribution of the return are used to compute the VaR of the portfolios of financial assets. Examples are also given to compare the VaR computed by our approach with those by other methods.
2

Scaling and Extreme Value Statistics of Sub-Gaussian Fields with Application to Neutron Porosity Data

Nan, Tongchao January 2014 (has links)
My dissertation is based on a unified self-consistent scaling framework which is consistent with key behavior exhibited by many spatially/temporally varying earth, environmental and other variables. This behavior includes tendency of increments to have symmetric, non-Gaussian frequency distributions characterized by heavy tails that often decay with lag; power-law scaling of sample structure functions (statistical moments of absolute increments) in midranges of lags, with breakdown in power-law scaling at small and/or large lags; linear relationships between log structure functions of successive orders at all lags, also known as extended self-similarity; and nonlinear scaling of structure function power-law exponents with function order. The major question we attempt to answer is: given data measured on a given support scale at various points throughout a 1D/2D/3D sampling domain, which appear to be statistically distributed and to scale in a manner consistent with that scaling framework, what can be said about the spatial statistics and scaling of its extreme values, on arbitrary separation or domain scales? To do so, we limit our investigation in 1D domain for simplicity and generate synthetic signals as samples from 1D sub-Gaussian random fields subordinated to truncated monofractal fractional Brownian motion (tfBm) or truncated fractional Gaussian noise (tfGn). Such sub-Gaussian fields are scale mixtures of stationary Gaussian fields with random variances that we model as being log-normal or Lévy α/2-stable. This novel interpretation of the data allows us to obtain maximum likelihood estimates of all parameters characterizing the underlying truncated sub-Gaussian fields. Based on synthetic data, we find these samples conform to the aforementioned scaling framework and confirm the effectiveness of generation schemes. We numerically investigate the manner in which variables, which scale according to the above scaling framework, behave at the tails of their distributions. Ours is the first study to explore the statistical scaling of extreme values, specifically peaks over thresholds or POTs, associated with such families of sub-Gaussian fields. Before closing this work, we apply and verify our analysis by investigating the scaling of statistics characterizing vertical increments in neutron porosity data, and POTs in absolute increments, from six deep boreholes in three different depositional environments.
3

Strategies for Improving Verification Techniques for Hybrid Systems

Carroll, Simon A. 06 June 2008 (has links)
No description available.
4

A test for Non-Gaussian distributions on the Johannesburg stock exchange and its implications on forecasting models based on historical growth rates.

Corker, Lloyd A January 2002 (has links)
Masters of Commerce / If share price fluctuations follow a simple random walk then it implies that forecasting models based on historical growth rates have little ability to forecast acceptable share price movements over a certain period. The simple random walk description of share price dynamics is obtained when a large number of investors have equal probability to buy or sell based on their own opinion. This simple random walk description of the stock market is in essence the Efficient Market Hypothesis, EMT. EMT is the central concept around which financial modelling is based which includes the Black-Scholes model and other important theoretical underpinnings of capital market theory like mean-variance portfolio selection, arbitrage pricing theory (APT), security market line and capital asset pricing model (CAPM). These theories, which postulates that risk can be reduced to zero sets the foundation for option pricing and is a key component in financial software packages used for pricing and forecasting in the financial industry. The model used by Black and Scholes and other models mentioned above are Gaussian, i.e. they exhibit a random nature. This Gaussian property and the existence of expected returns and continuous time paths (also Gaussian properties) allow the use of stochastic calculus to solve complex Black- Scholes models. However, if the markets are not Gaussian then the idea that risk can be. (educed to zero can lead to a misleading and potentially disastrous sense of security on the financial markets. This study project test the null hypothesis - share prices on the JSE follow a random walk - by means of graphical techniques such as symmetry plots and Quantile-Quantile plots to analyse the test distributions. In both graphical techniques evidence for the rejection of normality was found. Evidenceleading to the rejection of the hypothesis was also found through nonparametric or distribution free methods at a 1% level of significance for Anderson-Darling and Runs test.
5

Estimation of Technical Efficiency in Stochastic Frontier Analysis

Nguyen, Ngoc B. 03 August 2010 (has links)
No description available.
6

亞洲四小龍匯率報酬率尾部參數變化之探討

薛承志 Unknown Date (has links)
一般而言財務資料具有高峰(High Kurtosis)及厚尾(Heavy Tail)的特性,極值理論(Extreme Value Theorem)即是著重於尾部極端事件發生的機率,描繒出尾部極端值的機率分配,以捕捉財務資料中具厚尾的現象,利用估算尾部指數(Tail Index) α值判斷尾部分配的厚、薄程度。一般在估算α值時均是假設α值是不會隨著時間而變動的穩定值,然而在我們所選取的樣本期間內,可能伴隨著一些重大事件,如金融風暴、或是制度面的改變等,均有可能造成尾部極端值發生機率的增加或減少,因此在其樣本期間所估算的α值不應假設為一不變的常數。本文即是針對亞洲四小龍的匯率資料做”尾部參數是否發生結構變化(Structural Change)”之假設檢定,並且找出發生結構變化的時點。 實証結果發現,在1993~2004年間,亞洲四小龍的匯率報酬率其尾部參數確實有發生結構變化的情形。此結論對於風險管理者而言,必須注意到尾部參數α值應該是一個會隨著時間而改變的值,也就是在估算 值時應該要避開發生結構變化的可能時點,或許應於所要估計的樣本期間先執行尾部參數是否有結構變化的檢定,如此才能更準確的估算α值。
7

Processus et indicateurs de risque en assurance non-vie et sécurité alimentaire / Processes and risk indicators in non-life insurance mathematics and food security

Tillier, Charles 19 June 2017 (has links)
L'analyse des risques est devenu un enjeu majeur dans notre société. Quels que soient les champs d'application dans lesquels une situation à risque peut survenir, les mathématiques et plus particulièrement les statistiques et les probabilités se révèlent être des outils essentiels. L'objet principal de cette thèse est de développer des indicateurs de risque pertinents et d'étudier les propriétés extrémales de processus intervenant dans deux domaines d'applications : en risque alimentaire et en assurance. La théorie du risque se situe entre l'analyse des valeurs extrêmes et la théorie des variables aléatoires à variations régulières ou à queues lourdes. Dans le premier chapitre, on définit les éléments clefs de la théorie du risque ainsi que la notion de variation régulière et on introduit différents modèles liés au risque alimentaire qui seront étudiés dans les chapitres 2 et 3. Le chapitre 2 présente les travaux effectués avec Olivier Wintenberger. Pour des classes de processus stochastiques, sous des hypothèses de variations régulières, on développe une méthode qui permet d'obtenir des équivalents asymptotiques en horizon fini d'indicateurs de risque en assurance et en risque alimentaire tels que la probabilité de ruine, le "temps passé au dessus d'un seuil" ou encore la "sévérité de la ruine". Le chapitre 3 se concentre sur des modèles en risque alimentaire. Précisément, on étudie les propriétés extrémales de différentes généralisations d'un processus d'exposition à un contaminant nommé KDEM pour Kinetic Dietary Exposure Model proposé par Patrice Bertail et ses co-auteurs en 2008. Sous des hypothèses de variations régulières, on propose des équivalents asymptotiques du comportement de queue et de l'indice extrémal du processus d'exposition. Enfin, le chapitre 4 passe en revue différentes techniques statistiques particulièrement adaptées à l'étude du comportement extrémal de certains processus de Markov. Grâce à des propriétés de régénérations, il est possible de découper le chemin des observations en blocs indépendants et identiquement distribués et de n'étudier ainsi que le processus sur un bloc. Ces techniques s'appliquent même si la chaîne de Markov n'est pas atomique. On se concentre ici sur l'estimation de l'indice de queue et de l'indice extrémal. On illustre la performance de ces techniques en les appliquant sur deux modèles - en assurance et en finance - dont on connaît les résultats théoriques / Risk analyses play a leading role within fields such as dietary risk, hydrology, nuclear security, finance and insurance and is more and more present in theapplications of various probability tools and statistical methods. We see a significant impact on the scientific literature and on public institutions in the past years. Risk theory, which is really close to extreme value analysis, typically deals with the occurrences of rare events which are functions of heavy-tailed random variables, for example, sums or products of regularly varying random variables. The purpose of this thesis is the following : to develop revelant risk indicators and to study the extremal properties of stochastic processes used in dietary risk assessment and in insurance. In Chapter 1, we present the main tools used in risk theory and the notion of regular variation and introduce different models involved in dietary risk assessment, which will be specifically studied in Chapters 2 and 3. Chapter 2 presents a joint work with Olivier Wintenberger. For a particular class of stochastic processes, under the assumption of regular variation, we propose a method that gives way to asymptotic equivalents on a finite-time horizon of risk indicators such as the ruin probability, the Expected Time over a Threshold or the Expected Severity of the ruin. Chapter 3 focuses on dietary risk models. To be precise, we study the extremal properties of an extension of a model called KDEM for Kinetic Dietary Exposure Model introduced by Patrice Bertail and his co-authors in 2008. Under the assumption of regular variation, we provide asymptotic equivalents for the tail behavior and the extremal index of the exposure process. In Chapter 4, we review different statistical tools specifically tailored for the study of the extremal behavior of Markov processes. Thanks to regeneration properties, we can split the path of observations into blocks which are independent and identically distributed. This technic still works even if the Markov chain is not atomic. We focus here on the estimation of the tail index and the extremal index. We illustrate the performance of these technics applying them on two models in insurance and finance for which we know the theoritical results.
8

Modeling Extreme Values / Modelování extrémních hodnot

Shykhmanter, Dmytro January 2013 (has links)
Modeling of extreme events is a challenging statistical task. Firstly, there is always a limit number of observations and secondly therefore no experience to back test the result. One way of estimating higher quantiles is to fit one of theoretical distributions to the data and extrapolate to the tail. The shortcoming of this approach is that the estimate of the tail is based on the observations in the center of distribution. Alternative approach to this problem is based on idea to split the data into two sub-populations and model body of the distribution separately from the tail. This methodology is applied to non-life insurance losses, where extremes are particularly important for risk management. Never the less, even this approach is not a conclusive solution of heavy tail modeling. In either case, estimated 99.5% percentiles have such high standard errors, that the their reliability is very low. On the other hand this approach is theoretically valid and deserves to be considered as one of the possible methods of extreme value analysis.
9

Contribution à la modélisation spatiale des événements extrêmes / Contributions to modeling spatial extremal events and applications

Bassene, Aladji 06 May 2016 (has links)
Dans cette de thèse, nous nous intéressons à la modélisation non paramétrique de données extrêmes spatiales. Nos résultats sont basés sur un cadre principal de la théorie des valeurs extrêmes, permettant ainsi d’englober les lois de type Pareto. Ce cadre permet aujourd’hui d’étendre l’étude des événements extrêmes au cas spatial à condition que les propriétés asymptotiques des estimateurs étudiés vérifient les conditions classiques de la Théorie des Valeurs Extrêmes (TVE) en plus des conditions locales sur la structure des données proprement dites. Dans la littérature, il existe un vaste panorama de modèles d’estimation d’événements extrêmes adaptés aux structures des données pour lesquelles on s’intéresse. Néanmoins, dans le cas de données extrêmes spatiales, hormis les modèles max stables,il n’en existe que peu ou presque pas de modèles qui s’intéressent à l’estimation fonctionnelle de l’indice de queue ou de quantiles extrêmes. Par conséquent, nous étendons les travaux existants sur l’estimation de l’indice de queue et des quantiles dans le cadre de données indépendantes ou temporellement dépendantes. La spécificité des méthodes étudiées réside sur le fait que les résultats asymptotiques des estimateurs prennent en compte la structure de dépendance spatiale des données considérées, ce qui est loin d’être trivial. Cette thèse s’inscrit donc dans le contexte de la statistique spatiale des valeurs extrêmes. Elle y apporte trois contributions principales. • Dans la première contribution de cette thèse permettant d’appréhender l’étude de variables réelles spatiales au cadre des valeurs extrêmes, nous proposons une estimation de l’indice de queue d’une distribution à queue lourde. Notre approche repose sur l’estimateur de Hill (1975). Les propriétés asymptotiques de l’estimateur introduit sont établies lorsque le processus spatial est adéquatement approximé par un processus M−dépendant, linéaire causal ou lorsqu'il satisfait une condition de mélange fort (a-mélange). • Dans la pratique, il est souvent utile de lier la variable d’intérêt Y avec une co-variable X. Dans cette situation, l’indice de queue dépend de la valeur observée x de la co-variable X et sera appelé indice de queue conditionnelle. Dans la plupart des applications, l’indice de queue des valeurs extrêmes n’est pas l’intérêt principal et est utilisé pour estimer par exemple des quantiles extrêmes. La contribution de ce chapitre consiste à adapter l’estimateur de l’indice de queue introduit dans la première partie au cadre conditionnel et d’utiliser ce dernier afin de proposer un estimateur des quantiles conditionnels extrêmes. Nous examinons les modèles dits "à plan fixe" ou "fixed design" qui correspondent à la situation où la variable explicative est déterministe et nous utlisons l’approche de la fenêtre mobile ou "window moving approach" pour capter la co-variable. Nous étudions le comportement asymptotique des estimateurs proposés et donnons des résultats numériques basés sur des données simulées avec le logiciel "R". • Dans la troisième partie de cette thèse, nous étendons les travaux de la deuxième partie au cadre des modèles dits "à plan aléatoire" ou "random design" pour lesquels les données sont des observations spatiales d’un couple (Y,X) de variables aléatoires réelles. Pour ce dernier modèle, nous proposons un estimateur de l’indice de queue lourde en utilisant la méthode des noyaux pour capter la co-variable. Nous utilisons un estimateur de l’indice de queue conditionnelle appartenant à la famille de l’estimateur introduit par Goegebeur et al. (2014b). / In this thesis, we investigate nonparametric modeling of spatial extremes. Our resultsare based on the main result of the theory of extreme values, thereby encompass Paretolaws. This framework allows today to extend the study of extreme events in the spatialcase provided if the asymptotic properties of the proposed estimators satisfy the standardconditions of the Extreme Value Theory (EVT) in addition to the local conditions on thedata structure themselves. In the literature, there exists a vast panorama of extreme events models, which are adapted to the structures of the data of interest. However, in the case ofextreme spatial data, except max-stables models, little or almost no models are interestedin non-parametric estimation of the tail index and/or extreme quantiles. Therefore, weextend existing works on estimating the tail index and quantile under independent ortime-dependent data. The specificity of the methods studied resides in the fact that theasymptotic results of the proposed estimators take into account the spatial dependence structure of the relevant data, which is far from trivial. This thesis is then written in thecontext of spatial statistics of extremes. She makes three main contributions.• In the first contribution of this thesis, we propose a new approach of the estimatorof the tail index of a heavy-tailed distribution within the framework of spatial data. This approach relies on the estimator of Hill (1975). The asymptotic properties of the estimator introduced are established when the spatial process is adequately approximated by aspatial M−dependent process, spatial linear causal process or when the process satisfies a strong mixing condition.• In practice, it is often useful to link the variable of interest Y with covariate X. Inthis situation, the tail index depends on the observed value x of the covariate X and theunknown fonction (.) will be called conditional tail index. In most applications, the tailindexof an extreme value is not the main attraction, but it is used to estimate for instance extreme quantiles. The contribution of this chapter is to adapt the estimator of the tail index introduced in the first part in the conditional framework and use it to propose an estimator of conditional extreme quantiles. We examine the models called "fixed design"which corresponds to the situation where the explanatory variable is deterministic. To tackle the covariate, since it is deterministic, we use the window moving approach. Westudy the asymptotic behavior of the estimators proposed and some numerical resultsusing simulated data with the software "R".• In the third part of this thesis, we extend the work of the second part of the framemodels called "random design" for which the data are spatial observations of a pair (Y,X) of real random variables . In this last model, we propose an estimator of heavy tail-indexusing the kernel method to tackle the covariate. We use an estimator of the conditional tail index belonging to the family of the estimators introduced by Goegebeur et al. (2014b).

Page generated in 0.0643 seconds