• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

特徵價格法在住宅大量估價模型中的延伸—分量迴歸之應用 / The Extension of Hedonic Price Theory in Housing Mass appraisal Models— The Application of Quantile Regression

張怡文, Chang, Yi Wen Unknown Date (has links)
特徵價格模型是傳統常被使用於不動產大量估價的模型,由於模型將造成所有價位的不動產其特徵都具有同樣的邊際價格而無法解釋現實不動產特徵的各種可能狀況,故引發本研究利用分量迴歸建立大量估價模型之動機。研究利用台灣不動產成交行情公報的資料進行台北市大廈的實證分析,針對特徵價格法的延伸與估價準確度做檢視。嘗試應用分量迴歸建立大量估價模型,討論住宅特徵對於價格的邊際影響力於不同價位的住宅是否存在差異,並討論分量迴歸模型的估價精確度。研究採用交互驗證法與重複實驗30次討論模型的估計效果,並利用平均絕對百分比誤差(MAPE)以及命中率(Hit Rate)做為模型預測優劣程度的衡量標準,以討論分量迴歸模型是否可以較最小平方特徵價格模型有更為準確的估計表現。實證首先探討價格分量之下各住宅屬性對於價格的影響狀況,得到大部分住宅特徵對於價格的邊際影響力的確會因住宅價位的不同而有所差異。在估價準確度的部份,經測試得到利用分量迴歸建立大量估價模型的估價效果達研究的預期目標,且其估計表現優於最小平方特徵價格模型。 / 藉由分量迴歸模型,得到隨著住宅價位的增加,坪數與屋齡對於價格的影響力並非呈現一致的趨勢;坪數輪廓與屋齡輪廓出現轉折也為變數增加二次項變數的原因得到實證依據。重複實驗30次的整體表現,分量迴歸模型的MAPE較最小平方迴歸模型低了1.687%;誤差落在正負10%的Hit Rate較最小平方迴歸模型高了3.81%;誤差落在正負20%的Hit Rate較最小平方迴歸模型高了5.14%。30次的實證為分量迴歸模型的估價表現更優於最小平方迴歸模型得到較具說服力的結果。 / Hedonic pricing models are traditionally used for real estate automated valuation models. Because the conditional mean calculated by OLS does not give a complete description of the relationship between dependent variable and independent variables, which leads to the motive of this study. This study inspects the extension of hedonic pricing models and appraisal accuracy, and we attempt to apply quantile regression to real estate automated valuation models and discuss the difference of the marginal contribution in each individual characteristic under different price level. Our study adopts cross validation and repeats empirical process for 30 times, and we use MAPE and hit rate to evaluate accuracy and argue if quantile regression models have better estimation. The empirical results show that the marginal contribution of housing area and age changes with price level; the turning points of area curve and age curve show empirical evidence for including square variables. The entirety performance of repeated experiments points out that the MAPE of quantile regression model is 1.687% lower than OLS model; as error ranged between 10% to -10%, the hit rate of quantile regression model is 3.81% higher than OLS model; as error ranged between 20% to -20%, the hit rate of quantile regression model is 5.14% higher than OLS model. The 30 times experiment of quantile regression models shows a much more persuasive result than OLS models.
2

高密度發展對房價之影響-以台北市為例 / The Impact of High Density Development on Housing Prices─ An example of Taipei City

施甫學, Shih, Fu Hsueh Unknown Date (has links)
高密度發展的都市型態已成為世界各國為追求永續發展的都市規劃方式。對政策規劃者來說,他們關心的議題之一為高密度都市發展後房價的變動是否會影響居民對住的福利水準,過去文獻之實證研究亦發現高密度發展將產生房價上漲或下跌的效果,此引發本研究欲得知高密度指標對台北市房價將如何影響之動機。然而高密度都市發展政策的實施對各所得階層居民的影響為何若以普通最小平方迴歸分析將無法得知,所以本研究以分量迴歸進行分析,增加變數的可解釋能力。 因此本研究以台北市十二個行政區為空間範圍,利用民國九十三年至九十六年間共1268筆房屋交易實例案例,作為實證研究之樣本。主題變數方面以容積率、是否為住宅大樓及人口密度來分析各變數對房價之影響。藉由普通最小平方迴歸及分量迴歸分析結果發現,高密度之都市發展將造成住宅平均價格下跌,對中低總價住宅亦產生價格下跌的效果,因此高密度都市發展型態將增加居民福利水準,增進都市整體效益。 / Nowadays, most nations in the world has thought of the urban form of high density development as a mean to pursue sustainable development. For policy planner, what they care is whether high density development would influence residents about the variation of welfare for living. Literatures of past empirical research also show that high density development will have the effects of rising or falling on housing prices, which leads to the motive of this study and also leads to a better understanding of how high density indicators would impact housing prices in Taipei City. However, what’s the impact for every income class through the implication of this urban development policy is impossible to know if we use OLS models, therefore, our study adopts Quantile Regression to enhance the interpretable abilities for every variable. Accordingly, our study uses 1268 property-trading-records from 2004 to 2007 as samples, which all locate within 12 districts in Taipei City. We use floorage ratio, residential building and population density as main variables to analyze their impacts on housing prices. The result shows that high density development will both lead to falling of average housing prices and middle and low housing prices. Consequently, the urban form of high density development will enhance the level of residents’ welfare and improve the benefits for all urban area.
3

住宅價格指數之研究 / The Research of Housing Price Indexes

楊宗憲, Patrick Young Unknown Date (has links)
過去由於國內住宅市場的資訊並不流通,以致市場上出現的價格資訊相當混亂,就價格的種類來看,各種名目住宅價格間的差異未有明確釐清,使一般人常會對不同的住宅價格產生誤解。就時間序列來看,不同的時間、地區及住宅類型,到底住宅價格的變動如何,也未能有一嚴謹且量化之指標表示。   本研究運用標準住宅的概念編製住宅價格指數,所謂標準住宅乃是指一定時間、地區、類型,市場上成交的住宅中,典型的住宅屬性及其數量的組合,也就是說,觀察市場上成交典型住宅的價格變動情形,作為指數編製的基礎,以控制住宅的異質性,再以特徵價格法來求得各屬性的單價以進一步控制品質。另外,由於住宅成交數量變動較大,因此運用裴氏公式作為指數公式,使加權權重的誤差不致太大。   由各地區的指數變動趨勢可得到以下幾點結論:首先,一般所認為的三次房地產價格高峰期(62至63年、68至70年、76至78年),從指數的變動來看並不明顯,只有76至78年的上漲趨勢較明顯,在經過幣值平減後,長期趨勢更顯平緩;其次,長期來看,住宅價格持續上漲,部分時期持平或下跌,但幅度及持續時間有限,故所謂房價下跌,其實跌的是上漲率;最後,就上漲幅度來看,台北縣、市的幅度最大,除台北市外,非都市地區(非省轄市)房價的上漲速度較都市地區(省轄市)為高。   最後歸納二個造成一般人對住宅價格變動之錯誤印象的原因。主要是品質未加控制,由於品質會影響住宅價格,且消費的住宅品質及數量會隨時間而改變,一般人未察覺此點,而造成對房價上漲的誤解。其次是未考慮幣值,由於「今天的一塊錢不等於明天的一塊錢」,因此以名目價格觀察住宅價格變動的作法,也會造成對房價變動的誤解。

Page generated in 0.075 seconds