Spelling suggestions: "subject:"helical soil"" "subject:"helical oil""
1 |
Heat Transfer of a Multiple Helical Coil Heat Exchanger Using a Microencapsulated Phase Change Material SlurryGaskill, Travis 2011 December 1900 (has links)
The present study has focused on the use of coil heat exchangers (CHEs) with microencapsulated phase change material (MPCM) slurries to understand if CHEs can yield greater rates of heat transfer. An experimental study was conducted using a counterflow CHE consisting of 3 helical coils. Two separate tests were conducted, one where water was used as heat transfer fluid (HTF) on the coil and shell sides, respectively; while the second one made use of MPCM slurry and water on the coil and shell sides, respectively. The NTU-effectiveness relationship of the CHE when MPCM fluid is used approaches that of a heat exchanger with a heat capacity ratio of zero. The heat transfer results have shown that when using a MPCM slurry, an increase in heat transfer rate can be obtained when compared to heat transfer results obtained using straight heat transfer sections. It has been concluded that the increased specific heat of the slurry as well as the fluid dynamics in helical coil pipes are the main contributors to the increased heat transfer.
|
2 |
Dynamic process modelling of the HPS2 solar thermal molten salt parabolic trough test facilityTemlett, Robert 10 May 2019 (has links)
In recent years power generation from renewable energy has grown substantially both in South Africa and around the world. This growth is set to continue as there is more pressure to reduce the burning of fossil fuels. However, renewable energy power generation suffers from unpredictability, which causes problems when it comes to managing power grids. Concentrated Solar Power (CSP) plants offer a practical solution to store power in the form of thermal energy storage (TES). Thus, the plant can run when there is no solar energy available, leading to a more stable power supply. Unfortunately, CSP plants cost more than other renewables such as photovoltaic and wind power. Thus, there is a need for research into how to bring down the cost of CSP plants. One of the most proven types of CSP is the parabolic trough plant. The most recent innovation is to try and use molten salt as the heat transfer fluid which would reduce the cost of the plant. However, this new technology has not been implemented on a full scale CSP plant and little testing has been done to prove the technology. The HPS2 is a test facility aimed at testing the use of molten salt as a heat transfer fluid (HTF). This test facility, located in Evora Portugal, is being developed by an international consortium led by the German DLR institute of Solar Research. It is one of the first test facilities of its kind where experiments will be conducted to demonstrate the validity of using molten salt as a HTF and a storage medium in a parabolic trough CSP plant. The HPS2 test facility is not yet operational and there is a need for a dynamic thermofluid process model to better understand and predict both its steady state and transient operational behaviour. This dissertation reports on the development of such a dynamic thermofluid process model and the results obtained from it. The process model developed primarily focuses on the steam cycle with the TES incorporated into the model. The physical geometry of each of the components are employed to construct discretized elements for which the conservation of mass, energy, and momentum are applied in a one-dimensional network approach. The economizer and evaporator combined has a helical coil geometry and uses molten salt as a heat transfer fluid, which is unique. Thus, correlations had to be adjusted for the flow characteristics found in the economizer/evaporator. Results from the steady state simulations of the steam cycle show that the molten salt mass flowrate through the steam generation system will have to be reduced from the initially expected value to meet operational requirements. Results of the dynamic simulations show that the test facility will be able to produce a constant power supply despite transient solar conditions and highlights key dynamic responses for operators to be aware of.
|
3 |
Evaluation of Safety Transients in Helical Coil Steam Generators with RELAP5-3D Code / Safety Transients in Helical Coil Steam GeneratorsAlkan, Cahit January 2022 (has links)
Around the world, countries are increasingly considering carbon-free energy generation
options as the threat of climate change grows. Small modular reactor designs,
promising such carbon-free energy generation, are thriving worldwide with novel and
innovative technologies that improve safety as well as economic performance. Canada
is also considering small modular reactors (SMRs) as a means of achieving net zero
carbon emissions by 2050.
Some of these reactor designs utilize pressurized water for cooling and moderator.
Reactors with pressurized water have been subjected to steam generator tube ruptures
in the past, and a detailed investigation into the possible consequences of such incidents
in SMRs should be conducted.
In this research, a model for one of the newer designs, the NuScale Integrated Small
Modular Reactor, was developed with the RELAP5-3D code for assessing safety related
transients. The NuScale Small Modular Reactor incorporates helical coil steam
generators within its reactor pressure vessel, which are more efficient in terms of heat
transfer than the U-tube steam generators that are widely used in nuclear reactors.
In the first part of the research, a detailed model is created and used to obtain steady
state conditions with parameters collected from NuScale’s Final Safety Analysis Report
(FSAR). The Steam Generator Tube Rupture event is analyzed in the second part
of the work. Slight differences in the broken and intact steam generator pressures as
well as decay heat removal system flow rates are seen in the comparison of reference
values and calculated results. Among the reasons for those differences could be that
the correlations used by the RELAP5-3D code for heat transfer coefficient and pressure
drop in the helical coil steam generators are different than those of the NuScale proprietary
code NRELAP5, with which the analyses have been performed in the FSAR.
Also, post-dryout heat transfer at the exit of helical coil steam generators and evaporator
sections could cause differences in the outlet conditions of the steam, resulting in
different mass flow rates as well.
The final section of the research simulates a comparable but more severe tube rupture
incident without the availability of decay heat removal systems in order to assess
the reactor’s emergency core cooling system reaction. Passive decay heat removal systems
are crucial components for removing heat after reactor shutdown through heat
exchangers that are submerged in the reactor pool and connected to steam generators
by a closed loop. The containment pressures, the containment wall temperatures, and
the peak fuel clad temperatures are considered to be the key design constraints that
must be observed.
Future work on this subject could include modifying the source code, adding specific
correlations for helical coil steam generators, and comparing the results, as well
as quantifying uncertainties in the SGTR event. Main parameters in the quantification
of uncertainties would be reactor power, single phase and two-phase discharge coefficients
from the break, trip signals and delays as well as break size and location. / Thesis / Master of Applied Science (MASc)
|
4 |
Improved Thermoregulation Of Brain Temperature Using Phase Change Material-Mediated Head Cooling SystemRakkimuthu, Sathyaprabha January 2020 (has links)
No description available.
|
5 |
Investigation of high strain rate behavior of metallic specimens using electromagnetic inductive loadingMorales, Santiago Adolfo 20 September 2011 (has links)
Aerospace Engineering / The aim of this thesis is to explore the high strain rate behavior of metallic specimens using electromagnetic inductive loading as the means to inflict the required high strain rate deformation on laboratory scale specimens, allowing for controlled, repeatable experiments to be performed. Three separate experiments were designed and performed, using helical and spiral coils as the sources of radial and unidirectional loading.
The first experiment evaluated the effect of applying a polymer coating on 30.5 mm diameter, Al 6061- O tube samples, in two lengths, 18 and 36 mm. The expanding tube experiment was used to apply a radial loading on the specimens and record the event. Several optical techniques were then used to evaluate the behavior of the samples. Coatings of polyurea and polycarbonate were used. It was observed that the polycarbonate coating seemed to have a more profound effect on the behavior of the metal, by applying a larger restraining pressure on the tube surface during the expansion process, and thereby modifying the stress state of the specimen.
The second experiment looked to design an experimental arrangement to test the plane strain, high strain rate behavior of Al 6061-O tubes of different lengths. A 112 mm long solenoid was designed and manufactured, and testing was performed on 30.5 mm diameter Al 6061-O tubes in lengths of 50, 70 and 90 mm. It was observed that the coil behaved similar to shorter ones at low voltages and that the longer the specimen used, the more its deformation path approached a plane strain condition.
Finally, a third experiment was performed to develop an experiment to accelerate a plate to high linear velocities, as a means to evaluate the use of a flat spiral coil as the driver for future experiments based upon electromagnetic inductive loading. A prototype coil was manufactured and installed into a converted expanding tube experimental setup. Three samples were tested in several sizes, and materials: aluminum and steel. Speeds in the range of 45 to 251 m/s were obtained, validating the apparatus as a viable method to provide a unidirectional loading. / text
|
6 |
Durability Analysis of Helical Coil Spring in Vehicle Suspension SystemsKumar, Dhananjay 11 November 2021 (has links)
The suspension system in vehicles supports the vehicle's road stability and ride quality by scaling down the vibration responses resulting from road surface's roughness. This research focuses on fatigue life analysis of coil spring component. Static linear analysis is conducted on the 3D model of helical coil spring to investigate deformation and stress responses. Modal analysis evaluates the characteristics of vibration, i.e. natural resonance frequencies and corresponding mode shapes. The stress frequency response is generated after performing the harmonic analysis on the spring. Dynamics and performance of spring are analyzed over practical frequency range of 0 Hz to 200 Hz. Fatigue life estimation of vehicle suspension spring is performed using the stress data obtained from frequency response analysis. The stress-life (S-N) approach is utilized for fatigue life assessment of suspension spring. This durability analysis technique can be utilized in the automotive industry to improve reliability of vehicles. The outcome of this research can contribute in analysis and design of modern smart vehicles. / Master of Science / The suspension system in vehicles supports the vehicle's road stability and ride quality by scaling down the vibration responses resulting from road surface's roughness. This research focuses on the fatigue life analysis of suspension spring component. Initial phase of analysis is conducted to investigate the deformation and stress in 3D model of spring. Dynamics and performance of spring are analyzed over applicable frequency range of 0 Hz to 200 Hz. Fatigue life of vehicle suspension spring is evaluated using stress data from frequency response analysis. This durability analysis technique can be utilized in the automotive industry to improve reliability of vehicles. The outcome of this research can contribute in analysis and design of modern smart vehicles.
|
7 |
Characterization of greywater heat exchangers and the potential of implementation for energy savings / Värmeväxlare för spillvatten – karakterisering och energibesparingsmöjligheterGarcia, Jose Daniel January 2016 (has links)
Buildings account for up to 32% of the total energy use in different countries. Directives from the European Union have pointed out the importance of increasing energy efficiency in buildings. New regulation in countries like Sweden establishes that new buildings should fulfill regulations of Nearly Zero Energy Buildings (NZEB), opening an opportunity for new technologies to achieve these goals. Almost 80-90% of the energy in domestic hot water use is wasted from different applications with almost no use and with a lot of potential energy to be recovered. The present work studied the characteristics of greywater heat exchanger as a solution to recuperate heat from greywater to increase efficiency in buildings. This study explored the fluid mechanics involved in the vertical greywater heat exchangers, analyzing the falling film effect present in drain pipes and the effects of the secondary flow generated in the external helical coil. A heat transfer model from a theoretical approach was proposed and validated. In addition, this study explored the different variables influencing the economic feasibility of the technology and an economic analysis was performed. A theoretical comparison between a greywater heat exchanger application and a reference case without it was evaluated highlighting the importance of all the variables involved in the potential of implementation of the technology. The technology shows big potential in households with high water consumptions, especially with electric boilers.
|
Page generated in 0.0397 seconds