• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 6
  • 2
  • 1
  • Tagged with
  • 45
  • 45
  • 45
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Molecular interaction of flagellar export chaperone FliS and its interacting partner HP1076 in Helicobacter pylori. / CUHK electronic theses & dissertations collection

January 2010 (has links)
A HP1076 null mutant has been constructed to provide a better understanding of the biological significance of HP1076 in H. pylori . The DeltaHP1076 mutant displays impaired motility and resistance to the antibiotic drug metronidazole. Using a proteomic study, an overall of 40 differentially expressing proteins involved in metabolism and pH homeostasis for bacterial survival, adhesion for colonization, virulence factor to gastric epithelial cells and antigenic proteins have been identified. The virulence factor, Cag pathogenicity island protein (Cag 26) and urease UreA and UreB are confirmed to have enhanced and reduced expression in null mutants. These findings may provide new insight into the infection of H. pylori. / FliS is an export chaperone that binds to flagellin molecules in cytosol in order to prevent pre-mature polymerization. Disruption of FliS would result in formation of shorter flagella and impaired adhesion ability to epithelial cells. Previous yeast two-hybrid study has identified various FliS associated proteins in H. pylori, but with no known implications. Here, we have demonstrated the interaction of FliS and a hypothetical protein HP1076 by biochemical and biophysical methods. Moreover, HP1076 possesses anti-aggregation ability on insoluble FliS-mutants and chaperone activity. Thus, HP1076 is proposed to be a co-chaperone that promotes the folding and chaperone activity of FliS. FliS is demonstrated to have a broad range of substrate specificity that binds to flagellin and flagellar related proteins which may play a key role in flagellar export system different from other flagellated bacteria. / Helicobacter pylori is a pathogenic bacterium and adheres to the gastric mucosal cells. Chronic infection would lead to gastritis or peptic ulceration and is one of the leading causes of gastric cancer. Formation of functional flagella is essential for infection, that it aids in motility of bacteria and colonization on gastric epithelial cells. The process is complex and involves more than 50 proteins in assembly of structural proteins, regulatory proteins, an export apparatus, a motor and a sensory system. Cytosolic chaperones are required to bind to exported proteins in order to facilitate the export or prevent the aggregation of proteins in cytosol. Divergence is found in flagellar system H. pylori that may account for survival inside gastric environment. / The crystal structures of FliS, HP1076 fragment and FliS/HP1076 complex are determined at 2.7A, 1.8A and 2.7A resolution respectively to provide better understanding of their molecular interactions. FliS consists of four helices and HP1076 consists of helical rich bundle structure with three helices and three beta strands that share similar fold to that of a flagellin homologue, hook-associated protein and FliS, suggesting HP1076 is involved in flagellar system. The FliS/HP1076 complex reveals an extensive electrostatic and hydrophobic binding interface which is distinct from the flagellin binding pocket on FliS. HP1076 stabilizes two alpha helices of FliS and therefore the overall bundle structure. Our findings provide new insights into the flagellar export chaperones and other secretion chaperones in Type III secretion system. / Lam, Wai Ling. / Adviser: An Wing-Ngor. / Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 223-243). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
42

Phytochemical analysis and bioactivity of selected South African medicinal plants on clinical isolates of Helicobacter pylori

Njume, Collise January 2011 (has links)
Medicinal plants have been used as traditional medicine in the treatment of numerous human diseases for thousands of years in many parts of the world. In the developing world, especially in rural areas, herbal remedies continue to be a primary source of medicine. Scientifically, medicinal plants have proven to be an abundant source of biologically active compounds, many of which have already been formulated into useful therapeutic substances or have provided a basis for the development of new lead molecules for pharmaceuticals. Antibiotic resistance, undesireable side effects and expences associated with the use of combination therapy in the treatment of Helicobacter pylori infections have generated a considerable interest in the study of medicinal plants as potential sources of new drugs against this organism. The high complexicity of bioactive compounds accumulated in plants coupled with their broad antimicrobial activity may make it difficult for pathogenic organisms, including H. pylori to acquire resistance during treatment. This study therefore evaluates the antimicrobial potential of selected South African medicinal plants employed in the treatment of H. pylori-related infections, and the subsequent isolation of the plant active principles. An ethnobotanical survey of plants used in the treatment of H. pylori-related infections was conducted in the study area. Crude extracts of Combretum molle, Sclerocarya birrea, Garcinia kola, Alepidea amatymbica and 2 Strychnos species were screened against 30 clinical strains of H. pylori and 2 standard control strains (NCTC 11638 and ATCC 43526). In the preliminary stages of this study, ethyl acetate, acetone, ethanol, methanol and water extracts of the plants were tested against H. pylori by agar well diffusion and micro broth dilution methods. The plant crude extracts that exhibited anti-H. pylori activity with a iv percentage susceptibility of 50 percent and above were considered for the rate of kill assays and the most active crude extracts selected for bio-assay guided isolation of the active ingredient. Preliminary fractionation of the crude extract was achieved by thin layer chromatography (TLC) using different solvent combinations; hexane/diethylether (HDE), ethyl acetate/methanol/water (EMW) and chloroform/ethyl acetate/formic acid (CEF) in order to determine the most suitable combination for column chromatography (CC) and subsequent testing by indirect bioautography. The extract was then fractionated in a silica gel column using previously determined solvent combinations as eluent. Active fractions obtained from column chromatography separations were further fractionated and the compounds identified by gas chromatography/mass spectrometry (GC/MS) analysis. All the plants exhibited antimicrobial activity against H. pylori with zone of inhibition diameters ranging from 0 - 38 mm and minimum inhibitory concentration (MIC) values ranging from 0.06 - 5.0 mg/mL. The most active plant extracts were the acetone extract of C. molle with a percentage susceptibility of 87.1 percent, acetone and aqueous extracts of S. birrea (71 percent each) and the ethanolic extracts of G. kola (53.3 percent). Except for the aqueous extract, these extracts also exhibited a strong bactericidal activity against H. pylori at different concentrations. TLC analysis revealed the presence of 9 components in the acetone extract of S. birrea with the EMW solvent system as opposed to 5 and 8 with HDE and CEF respectively. Bioassay-guided isolation led to the identification of 52 compounds from the acetone extract of S. birrea with n-octacosane being the most abundant (41.68 percent). This was followed by pyrrolidine (38.91 percent), terpinen-4-ol (38.3 percent), n-eicosane (24.98 percent), cyclopentane (16.76 percent), n-triacontane (16.28 percent), aromadendrene (13.63 percent) and α-gujunene (8.77 percent). Terpinen-4-ol and pyrrolidine demonstrated strong antimicrobial activity against H. pylori at all concentrations tested. These results may serve as preliminary scientific validation of the ethnomedicinal uses of the above mentioned plants in the treatment of H. pylori-related infections in South Africa. Terpinen-4-ol and pyrrolidine could be considered for further evaluation as therapeutic or prophylactic agents in the treatment of H. pylori-related infections. However, further investigations would be necessary to determine their toxicological properties, in-vivo potencies and mechanism of action against H.pylori
43

The effect of exposure to antibiotics on incidence and spontaneous clearance of childhood helicobacter pylori infection /

Broussard, Cheryl S. Goodman, Karen J. January 2007 (has links)
Thesis (Ph. D.)--University of Texas Health Science Center at Houston, School of Public Health, 2007. / "May 2007" Includes bibliographical references (leaves 181-192).
44

Effects of health disparities on Helicobacter pylori infection among children on the United States-Mexico border.

He, Yu. Aragaki, Corinne. January 2007 (has links)
Thesis (M.P.H.)--University of Texas Health Science Center at Houston, School of Public Health, 2007. / Source: Masters Abstracts International, Volume: 45-04, page: 1936. Adviser: Corinne C. Aragaki. Includes bibliographical references.
45

Antibacterial and phytochemical studies of selected South African honeys on clinical isolates of Helicobacter pylori

Manyi-Loh, Christy E January 2012 (has links)
Infection with Helicobacter pylori has been associated with the pathogenesis of numerous stomach and gastroduodenal diseases that pose threats to public health. Eradicaftion of this pathogen is a global challenge due to its alarming rate of multidrug resistance. Consequently, to find an alternative treatment, the search is increasingly focused on new antimicrobial product from natural sources including honey. Honey has been used as medicine in several cultures since ancient time due to its enormous biomedical activities. Its beneficial qualities have been endorsed to its antimicrobial, antioxidant, anti-inflammatory properties added to its phytocomponents. In this study, the anti-H. pylori activity of South African honeys and their solvent extracts as well as the phytochemicals present in the two most active honeys were evaluated. Agar well diffusion test was used to investigate the antimicrobial activity of six honey varieties obtained from different locations in the country. Subsequently, the honeys were extracted with four organic solvents viz n-hexane, diethyl ether, chloroform and ethyl acetate employed in order of increasing polarity. The antibacterial activity of the different solvent extracts of each honey was evaluated by agar well diffusion; broth micro dilution and time kill assays. Different chromatographic techniques (Thin layer & column chromatography) were employed to enumerate the phytochemical constituents in the most active solvent extracts of Pure Honey (PH) and Champagne Royal Train (CRT); and were identified by gas-chromatography linked mass-spectrometry. Linalool pure compound was equally evaluated for anti-H. pylori activity in a bid to trace the antibacterial agent among the variety of compounds identified. Data were analyzed by One-way ANOVA test at 95% confidence interval. Crude honeys and their solvent extracts demonstrated potent anti-H. pylori activity with zone diameter that ranged from [16.0mm (crude) to 22.2mm (extract)] and percentage susceptibilities of test isolates between 73.3% (crude) and 93.3% (extract). The chloroform extracts of PH and CRT were most active with MIC50 in the ranges 0.01- viii 10%v/v and 0.625-10%v/v respectively, not significantly different from amoxicillin (P> 0.05); and efficient bactericidal activity (100% bacterial cells killed) at 1/2MIC and 4xMIC over different time intervals, 36-72hrs and 18-72hrs respectively. The appearance of bands on the thin layer chromatography (TLC) chromatogram spotted with the chloroform extracts of PH and CRT; and developed with hexane: ethyl acetate: acetic acid (HEA) and methanol: acetic acid: water (MAAW) solvent systems indicated the presence of compounds. Purification of the compounds contained in these extracts over silica gel column yielded numerous fractions which were evaluated for antibacterial activity and purity. PHF5 was the most active fraction with a mean MIC50 value of 1.25mg/mL. Volatile compounds belonging to different known chemical families in honey were identified in all the active fractions obtained from PH. Conversely, only four compounds were identified in the active fractions obtained from CRT hence the non volatile constituents could be of prime relevance with respect to antibacterial activity of this honey. Of novelty was the presence of thiophene and N-methyl-D3-azirdine compounds, essential precursors used for the synthesis of natural products and pharmaceuticals with vital biomedical properties. Linalool demonstrated potent inhibitory (MIC95, 0.002- 0.0313mg/mL) and bactericidal activity (0.0039-0.313mg/mL) against the test isolates. On the other hand, a significant difference was recorded (P < 0.05) in comparing the activity of linalool compound to the fractions. PH could serve as a good economic source of bioactive compounds which could be employed as template for the synthesis of novel anti-H. pylori drugs. However, further studies are needed to determine the non volatile active ingredients in PH and CRT as well as toxicological testing

Page generated in 0.0961 seconds