• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Paramagnetic resonance studies of redox components in type-I (ferredoxin-reducing) bacterial photosynthetic reaction centres

Muhiuddin, Irine Parveen January 1999 (has links)
No description available.
2

Recombinant Electron Donors and Acceptors to and From Reaction Center Particles, and Light Dependent Menaquinone Reduction in Isolated Membranes of Heliobacterium Modesticaldum

January 2015 (has links)
abstract: The Heliobacterial reaction center (HbRC) is generally regarded as the most primitive photosynthetic reaction center (RC) known. Even if the HbRC is structurally and functionally simple compared to higher plants, the mechanisms of energy transduction preceding, inside the core, and from the RC are not totally established. Elucidating these structures and mechanisms are paramount to determining where the HbRC is in the grand scheme of RC evolution. In this work, the function and properties of the solubilized cyt c553, PetJ, were investigated, as well as the role HbRC localized menaquinone plays in light-induced electron transfer, and the interaction of the Nif-specific ferredoxin FdxB with reaction center particles devoid of bound FA/FB proteins. In chapter 2, I successfully express and purify a soluble version of PetJ that functions as a temperature dependent electron donor to P800+. Recombinant PetJ retains the spectroscopic characteristics of membrane-bound PetJ. The kinetics were characteristic of a bimolecular reaction with a second order rate of 1.53 x 104 M-1s-1 at room temperature and a calculated activation energy of 91 kJ/mol. In chapter 4, I use reverse phase high-performance liquid chromatography (HPLC) to detect the light-induced generation of Menaquinol-9 (MQH2) in isolated heliobacterial membranes. This process is dependent on laser power, pH, temperature, and can be modified by the presence of the artificial electron acceptor benzyl viologen (BV) and the inhibitors azoxystrobin and terbutryn. The addition of the bc complex inhibitor azoxystrobin decreases the ratio of MQ to MQH2. This indicates competition between the HbRC and the bc complex, and hints toward a truncated cyclic electron flow pathway. In chapter 5, the Nif-Specific ferredoxin FdxB was recombinantly expressed and shown to oxidize the terminal cofactor in the HbRC, FX-, in a concentration-dependent manner. This work indicates the HbRC may be able to reduce a wide variety of electron acceptors that may be involved in specific metabolic processes. / Dissertation/Thesis / Doctoral Dissertation Biochemistry 2015
3

Reconstitution of the Heliobacterial Reaction Center Into Proteoliposomes and Restoration of Its Interaction with Membrane-bound Cytochrome c553

January 2018 (has links)
abstract: To mimic the membrane environment for the photosynthetic reaction center of the photoheterotrophic Heliobacterium modesticaldum, a proteoliposome system was developed using the lipids found in native membranes, as well as a lipid possessing a Ni(II)-NTA head group. The liposomes were also saturated with menaquinone-9 to provide further native conditions, given that menaquinone is active within the heliobacterial reaction center in some way. Purified heliobacterial reaction center was reconstituted into the liposomes and a recombinant cytochrome c553 was decorated onto the liposome surface. The native lipid-attachment sequence of cytochrome c553 was truncated and replaced with a hexahistidine tag. Thus, the membrane-anchoring observed in vivo was simulated through the histidine tag of the recombinant cytochrome binding to the Ni(II)-NTA lipid's head group. The kinetics of electron transfer in this system was measured and compared to native membranes using transient absorption spectroscopy. The preferential-orientation of reconstituted heliobacterial reaction center was also measured by monitoring the proteoliposome system's ability to reduce a soluble acceptor, flavodoxin, in both whole and detergent-solubilized proteoliposome conditions. These data demonstrate that this proteoliposome system is reliable, biomimetic, and efficient for selectively testing the function of the photosynthetic reaction center of Heliobacterium modesticaldum and its interactions with both donors and acceptors. The recombinant cytochrome c553 performs similarly to native cytochrome c553 in heliobacterial membranes. These data also support the hypothesis that the orientation of the reconstituted reaction center is inherently selective for its bacteriochlorophyll special pair directed to the outer-leaflet of the liposome. / Dissertation/Thesis / Masters Thesis Chemistry 2018
4

Structure and Function of the Homodimeric Reaction Center, and Hydrogen Production, in Heliobacterium modesticaldum

January 2017 (has links)
abstract: The evolution of photosynthesis caused the oxygen-rich atmosphere in which we thrive today. Although the reaction centers involved in oxygenic photosynthesis probably evolved from a protein like the reaction centers in modern anoxygenic photosynthesis, modern anoxygenic reaction centers are poorly understood. One such anaerobic reaction center is found in Heliobacterium modesticaldum. Here, the photosynthetic properties of H. modesticaldum are investigated, especially as they pertain to its unique photochemical reaction center. The first part of this dissertation describes the optimization of the previously established protocol for the H. modesticaldum reaction center isolation. Subsequently, electron transfer is characterized by ultrafast spectroscopy; the primary electron acceptor, a chlorophyll a derivative, is reduced in ~25 ps, and forward electron transfer occurs directly to a 4Fe-4S cluster in ~650 ps without the requirement for a quinone intermediate. A 2.2-angstrom resolution X-ray crystal structure of the homodimeric heliobacterial reaction center is solved, which is the first ever homodimeric reaction center structure to be solved, and is discussed as it pertains to the structure-function relationship in energy and electron transfer. The structure has a transmembrane helix arrangement similar to that of Photosystem I, but differences in antenna and electron transfer cofactor positions explain variations in biophysical comparisons. The structure is then compared with other reaction centers to infer evolutionary hypotheses suggesting that the ancestor to all modern reaction centers could reduce mobile quinones, and that Photosystem I added lower energy cofactors to its electron transfer chain to avoid the formation of singlet oxygen. In the second part of this dissertation, hydrogen production rates of H. modesticaldum are quantified in multiple conditions. Hydrogen production only occurs in cells grown without ammonia, and is further increased by removal of N2. These results are used to propose a scheme that summarizes the hydrogen-production metabolism of H. modesticaldum, in which electrons from pyruvate oxidation are shuttled through an electron transport pathway including the reaction center, ultimately reducing nitrogenase. In conjunction, electron microscopy images of H. modesticaldum are shown, which confirm that extended membrane systems are not exhibited by heliobacteria. / Dissertation/Thesis / Doctoral Dissertation Biochemistry 2017
5

Photosynthetic and Fermentative Bacteria Reveal New Pathways for Biological Mercury Reduction

Grégoire, Daniel 18 January 2019 (has links)
Mercury (Hg) is a global pollutant and potent neurotoxin that bioaccumulates in aquatic and terrestrial food webs as monomethylmercury (MeHg). Anaerobic microbes are largely responsible for MeHg production, which depends on the bioavailability of inorganic Hg substrates to methylators. Hg redox cycling pathways such as Hg reduction play a key role in determining Hg’s availability in the environment. Although abiotic photochemical Hg reduction typically dominates in oxic surface environments, Hg reduction pathways mediated by photosynthetic and anaerobic microbes are thought to play an important role in anoxic habitats where light is limited and MeHg production occurs. Currently, the physiological mechanisms driving phototrophic and anaerobic Hg reduction remain poorly understood. The main objective of my thesis is to provide mechanistic details on novel anaerobic and phototrophic Hg reduction pathways. I used a combination of physiological, biochemical and trace Hg analytical techniques to study Hg reduction pathways in a variety of anaerobic and photosynthetic bacteria. I demonstrated that Hg redox cycling was directly coupled to anoxygenic photosynthesis in aquatic purple non-sulphur bacteria that reduced HgII when cells incurred a redox imbalance. I discovered that terrestrial fermentative bacteria reduced Hg through pathways that relied on the generation of reduced redox cofactors. I also showed that sulphur assimilation controlled Hg reduction in an anoxygenic phototroph isolated from a rice paddy. In addition, I developed methods to explore cryptic anaerobic Hg redox cycling pathways using Hg stable isotope fractionation. At its core, my thesis underscores the intimate relationship between cell redox state and microbial Hg reduction and suggests a wide diversity of microbes can participate in anaerobic Hg redox cycling.

Page generated in 0.0107 seconds