• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiple Levels of Regulation of Human SECIS Binding Protein 2, SBP2

Papp, Laura V, n/a January 2006 (has links)
Selenium is an essential trace mineral of fundamental importance to human health. Its beneficial functions are largely attributed to its presence within a group of proteins named selenoproteins in the form of the amino acid selenocysteine (Sec). Recently, it was revealed that the human selenoproteome consists of 25 selenoproteins, and for many of them their function remains unknown. The most prominent known roles of selenoproteins are to maintain the intracellular redox homeostasis, redox regulation of intracellular signalling and thyroid hormone metabolism. Sec incorporation into selenoproteins employs a unique mechanism that involves decoding of the UGA stop codon. The process requires interplay between distinct, intrinsic features such as the Sec Insertion Sequence (SECIS) element, the tRNASec and multiple protein factors. The work presented in this thesis has focused on characterising the regulation of human SECIS binding protein 2, SBP2, a factor central to this process. Experimental approaches combined with bioinformatics analysis revealed that SBP2 is subjected to alternative splicing. A total of nine alternatively spliced transcripts appear to be expressed in cells, potentially encoding five different protein isoforms. The alternative splicing events are restricted to the 5?-region, which is proposed to be dispensable for Sec incorporation. One of the variants identified, contains a mitochondrial targeting sequence that was capable of targetting SBP2 into the mitochondrial compartment. This isoform also appears to be expressed endogenously within the mitochondria in cells. Previous reports have depicted SBP2 as a ribosomal protein, despite the presence of a putative Nuclear Localisation Signal (NLS). In this study it was found that SBP2 subcellular localisation is not restricted to ribosomes. Intrinsic functional NLS and Nuclear Export Signals (NESs), enable SBP2 to shuttle between the nucleus and the cytoplasm via the CRM1 pathway. In addition, the subcellular localisation of SBP2 appears to play an important role in regulating Sec incorporation into selenoproteins. The subcellular localisation of SBP2 is altered by conditions imposing oxidative stress. Several oxidising agents induce the nuclear accumulation of SBP2, which occurs via oxidation of cysteine residues within a novel redox-sensitive cysteine rich domain (CRD). Cysteine residues were to form disulfide bonds and glutathione-mixed disulfides during oxidising conditions, which are efficiently reversed in vitro by the thioredoxin and glutaredoxin systems, respectively. These modifications negatively regulate selenoprotein synthesis. Cells depleted of SBP2 are more sensitive to oxidative stress than control cells, which correlated with a substantial decrease in selenoprotein synthesis after treatment with oxidising agents. These results provide direct evidence that SBP2 is required for Sec incorporation in vivo and suggest that nuclear sequestration of SBP2 under such conditions may represent a mechanism to regulate the expression of selenoproteins. Collectively, these results suggest that SBP2 is regulated at multiple levels: by alternative splicing, changes in subcellar localisation and redox control.
2

Gene expression in marine macroalga Ulva fasciata Delile against excess copper toxicity

Wu, Tsung-meng 28 December 2009 (has links)
This is the first research by using suppression subtractive hybridization (SSH) to analysis the gene expression in marine macroalga Ulva fasciata Delile against excess copper toxicity, and it gives us a comprehensive understanding of the tolerant mechanism while macroalgae face to the excess copper. Suppression subtractive hybridization was used to identify genes differentially expressed following exposure to 50 £gM CuSO4 for 6- 12h in a marine macroalga Ulva fasciata Delile. In this work, 69 genes were identified, of which 55 were up-regulated and 14 were down-regulated. According to the database of Gene Ontology (GO), these genes were classified into 10 categories as follows: 1. Transcription; 2. Translation, ribosomal structure and biogenesis; 3. Posttranslational modification, protein turnover, chaperones; 4. Photosynthesis; 5. Cell redox homeostasis; 6. Stress; 7. Metabolism; 8. Energy production and conversion; 9. Transport; 10. Function unknown. According to the results, we suggest that the responses of U. fasciata against excess copper toxicity are mainly through increase of the energy production for providing sufficient energy to many metabolic pathways, and control of the Fe homeostasis and redox form of thiol groups for maintaining the cellular redox homeostasis, moreover, expression of photosynthetic genes for letting the photosynthesis work. In addition, to scavenge the ROS is by expression of stress-related genes, meanwhile, the proteins, DNA and lipids damaged by ROS (reactive oxygen species) and copper are repaired by expression of the other categorical genes. Over and above, the genes expressing in the metabolism category might maintain the amino acids homeostasis and increase the purine content, and subsequently increase the tolerant capacity of U. fasciata against excess copper toxicity. In addition, the concentrations of antioxidants and the activities and gene expression of antioxidant enzymes were determined in Ulva fasciata Delile by a 4-day exposure to 0, 5, 10, 20 and 50 £gM CuSO4. These results demonstrate that the maintenance of antioxidant homeostasis and the induction of activities of antioxidant enzymes via enhanced gene expression are used by U. fasciata to cope with the Cu-induced oxidative stress, but the defense capacity cannot sufficiently alleviate oxidative damage occurring under the condition of higher Cu concentrations. Moreover, according to the results from the expression of genes involved in the control of redox homeostasis and antioxidant defense was studied in macroalga Ulva fasciata Delile in response to CuSO4 (5 and 50 £gM) and ROS (H2O2 and O2£»-), we suggest that ROS involved in up-regulation of antioxidant defense-related genes and the expression of genes of antioxidant defense enzymes and UfMsrA (methionine sulfoxide reductase A) are associated with long-term adaptation of U. fasciata to Cu excess and transcription of redox- related genes and UfGr (glutathione reductase) is up-regulated for short-term acclimation. Promoters play a key role in regulating gene expression. Based on the analysis of cis-acting elements on UfMsr promoters, we suggested that the signal transduction pathway of copper stress in U. fasciata is related to that of other stresses and of defense-related plant hormones, however, Ca2+ and calmodulin might participate in it. To sum up, U. fasciata could resist oxidative damage caused by excessive copper through the regulation on the molecular level.
3

Resposta antioxidante de raízes de arroz deficientes em peroxidases de ascorbato do citosol aos estresses salino e osmótico / Antioxidant responses of roots from rice plants deficient in cytosolic ascorbate peroxidases exposed to salt and osmotic stresses

Cunha, Juliana Ribeiro da January 2014 (has links)
CUNHA, Juliana Ribeiro. Resposta antioxidante de raízes de arroz deficientes em peroxidases de ascorbato do citosol aos estresses salino e osmótico. 2014. 73 f. Dissertação (Mestrado de Bioquímica) - Universidade Federal do Ceará, Fortaleza-CE, 2014. / Submitted by Eric Santiago (erichhcl@gmail.com) on 2016-06-01T12:29:58Z No. of bitstreams: 1 2014_dis_jrcunha.pdf: 1279314 bytes, checksum: a28bd01afc552e65a95fd7899e549097 (MD5) / Approved for entry into archive by José Jairo Viana de Sousa (jairo@ufc.br) on 2016-07-12T23:28:08Z (GMT) No. of bitstreams: 1 2014_dis_jrcunha.pdf: 1279314 bytes, checksum: a28bd01afc552e65a95fd7899e549097 (MD5) / Made available in DSpace on 2016-07-12T23:28:08Z (GMT). No. of bitstreams: 1 2014_dis_jrcunha.pdf: 1279314 bytes, checksum: a28bd01afc552e65a95fd7899e549097 (MD5) Previous issue date: 2014 / Salt and osmotic stresses are responsible for significant losses in agriculture, particularly in semiarid regions. In such conditions, roots are the first plant organ in contact with the stress and are responsible for perception and signaling. In leaves, cytosolic ascorbate peroxidases (APX) are the main isoforms involved with antioxidative defence against H2O2 excess and signaling under stressful conditions. Nevertheless, such metabolic mechanisms in roots are still unknown. The aim of this study was to test the hypothesis that cytosolic APX isoforms are essential to antioxidant protection in rice roots exposed to salt and osmotic stresses. To test this hypothesis, rice mutants double silenced for cytosolic APXs (APX1/2) and non-transformed plants, both with 45 day-old, were submitted to two stressful treatments: (1) NaCl and mannitol in iso-osmotic concentrations (-0.62MPa) for eight days and (2) mannitol 268 mM (-0.62MPa) for two days. In mutant plants, OsAPX1 and OsAPX2 transcript amounts (RNAs) were reduced by 90% whereas both protein abundance measured by Western blotting were not detectable. Under control conditions, total APX activity was reduced by 66% in comparison with NT plants, showing that the silencing was effective in roots. In APX1/2 roots, H2O2 level was increased by 51% as a consequence of APX1/2 silencing. Both stresses affected similarly root and shoot growing compared with NT. Membrane damage was increased at the same level in both genotypes and in both stresses, showing that APX1/2 were as sensible as NT plants. In NT roots, OsAPX1 and OsAPX2 transcript amounts was slightly increased by NaCl and mannitol whereas only NaCl increased APX activity. Under salt stress, both genotypes increased other APX isoforms, especially OsAPX3, OsAPX5 and OsAPX8. These increases were correlated with the increased APX activity. In addition, other peroxidases (GPX and GPOD) displayed the same trend as APX, increasing their activity in response to NaCl. On the other hand, mannitol induced a prominent increase in catalase activity in NT plants, while in APX1/2 plants CAT activity did not changed. The H2O2 content was increased in both genotypes exposed to mannitol treatments, and was reduced for NaCl. TBARS level was not altered in the presence of both stresses for both genotypes. This study shows that rice plants exposed to salt or osmotic stresses display complex responses regarding to redox metabolism. Apparently, both cytosolic APXs are not essential to antioxidative protection, since mutant plants presented similar physiological performance to NT plants. The responses to both stresses, NaCl and mannitol, were contrasting for both genotypes, suggesting that different mechanisms of antioxidative protection were triggered for each different stress condition. / Os estresses salino e osmótico são responsáveis por perdas significativas na produção agrícola, particularmente nas regiões semiáridas. Nessas condições, a raiz é o órgão da planta que sofre os primeiros efeitos e é responsável pela percepção e sinalização bioquímica dos estresses. Em folhas, as peroxidases do ascorbato do citosol são as principais isoformas envolvidas com a proteção antioxidativa contra o excesso de H2O2 e são também relacionadas na sinalização em condições de estresses. Entretanto, esses mecanismos de ação em raízes são pouco conhecidos. O objetivo deste estudo foi testar a hipótese de que as APXs citosólicas são essenciais para a proteção antioxidativa de raízes de arroz expostas às condições de estresse salino e osmótico. Para isso, plantas transgênicas silenciadas nas duas isoformas de APXs citosólicas (APX1/2) e plantas não transformadas (45 dias de idade) foram expostas a duas condições de estresse: (1) NaCl e manitol em concentrações iso-osmóticas (-0,62 MPa) durante oito dias e (2) manitol 268 mM (-0,62 MPa) por dois dias. Em plantas silenciadas, a quantidade de transcritos (RNAs) de OsAPX1 e OsAPX2 foi reduzida em 90% enquanto que a abundância das duas proteínas mensurada por western blotting não foi detectável. A atividade total de APX foi diminuída em 66% em comparação com as NTs na condição controle, evidenciando que o silenciamento foi efetivo nas raízes. Como consequência da deficiência das APX1/2, o nível de H2O2 foi aumentado em 51% comparado com as NTs. Ambos os estresses afetaram de modo similar o crescimento da raiz e parte aérea das APX1/2, em comparação com as plantas não transformadas (NT). Os valores de danos de membrana nas raízes foram aumentados na mesma intensidade nos dois genótipos e nos dois tipos de estresses, indicando que as APX1/2 apresentaram mesma sensibilidade aos estresses estudados. Nas plantas NT, as quantidades de transcritos de OsAPX1 e OsAPX2 foram aumentadas discretamente por NaCl e manitol enquanto que a atividade de APX foi aumentada somente pelo NaCl. As plantas APX1/2 mostraram a mesma tendência das NTs quanto a expressão e atividade de APX. O aumento na quantidade relativa dos transcritos das outras isoformas de APX, principalmente de OsAPX3, OsAPX5 e OsAPX8, em ambos os genótipos sob estresse salino, foi correlacionado com o aumento da atividade da APX. Além disso, outras peroxidases (GPX e GPOD) apresentaram a mesma tendência de aumento de atividade apenas sob estresse salino. Diferentemente, manitol induziu um aumento proeminente na atividade de catalase nas plantas NT enquanto que nas APX1/2 essa enzima já apresentava atividade aumentada antes do estresse e permaneceu no mesmo nível. As concentrações de H2O2 foram aumentadas intensamente por manitol e reduzidas na presença de NaCl. O nível de TBARS (indicador de peroxidação lipídica) foi mantido inalterado na presença dos dois estresses e nos dois tipos de plantas. Os resultados deste estudo, quando analisados em conjunto, mostram que raízes de arroz expostas aos estresses salino e osmótico exibiram respostas complexas em termos de metabolismo redox. Aparentemente, as duas APXs citosólicas não são essenciais para a proteção antioxidativa, uma vez que as plantas mutantes apresentaram uma performance fisiológica semelhante as plantas NT. As respostas aos dois fatores de estresse, NaCl e manitol, foram contrastantes nos dois genótipos, sugerindo que diferentes mecanismos de proteção antioxidante foram acionados para cada tipo de estresse.
4

Contrôle redox de la sécrétion protéique chez Saccharomyces cerevisiae / Redox control of protein secretion in Saccharomyces cerevisiae

Ponsero, Alise 30 September 2016 (has links)
Les protéines destinées à la sécrétion ou adressées à la membrane transitent par le réticulum endoplasmique (RE) où elles acquièrent leur conformation native et subissent des modifications post-traductionnelles comme la formation de ponts disulfures. Dans ce compartiment, la formation de ponts disulfures repose sur l’activité de l’oxydase Ero1 et de la Protein Disulfure Isomerase (PDI). Ero1 catalyse la formation de ponts disulfures et les transmet à la PDI qui à son tour oxyde les substrats. L’isomérisation ou la réduction terminale des ponts disulfures non-natifs repose sur un système de réduction dans le RE encore non élucidé. Des études suggèrent l’importance du glutathion réduit (GSH) dans ce système de réduction. Le GSH est un tripeptide redox exclusivement synthétisé dans le cytosol. Notre étude s’attache à (i) décrire les flux de glutathion entre RE et cytosol et (ii) identifier les acteurs de ce transport (iii) comprendre l’impact d’une modification de l’homéostasie redox du glutathion sur la physiologie du RE.Nous avons établi un système permettant d’étudier les flux de glutathion entre cytosol et RE. Afin de démasquer ces flux intracellulaires, nous avons utilisé une souche de S. cerevisiae surexprimant le transporteur plasmatique du glutathion, HGT1. Ce système permet de modifier rapidement et drastiquement la concentration cytosolique de glutathion. Les flux intracellulaires engendrés sont ensuite suivis grâce à des sondes redox spécifiques du glutathion adressées dans le RE ou le cytoplasme.(i) Nos résultats suggèrent que le GSH et le GSSG sont importés dans le RE depuis le cytosol. Le GSH est transporté selon un gradient de concentration via un système de transport de diffusion facilité. Ces flux sont également observés lors de stress stimulant la synthèse de GSH (stress thermique, arsenite…).(ii) Le transport de GSH dans le lumen est assuré par le translocon Sec61, et une régulation de cet import par la chaperone luminale Kar2 est observée.(iii) une réduction rapide de l’état redox du glutathion dans le RE conduit à une mort cellulaire programmée non apoptotique, également observée lors d’autre stress RE (traitement tunicamycine). / The endoplasmic reticulum (ER) is the first intracellular compartment of the protein secretion pathway. Protein maturation in this compartment involves protein folding and post-traductionnal modification including formation of disulfide bonds. The formation of disulfide bonds is operated by a highly conserved redox relay made of the thiol oxidase Ero1 and the protein disulfide isomerase (PDI). Ero1p catalyzes disulfide bond formation and relays them by thiol-disulfide exchange to PDI, which in turn oxidizes substrates. Isomerization and terminal reduction of non-native disulfide bonds both rely on a reduction system that remains to be formally identified. Studies however suggest the importance of reduced glutathione in this reducing system. GSH is small redox tripeptide exclusively synthesized in the cytosol. In this study we (i) describe the main parameters of glutathione traffic across the ER membrane (ii) identify the main actors involved in the transport and (iii) analyze the physiological impact of a modification of the ER glutathione redox state.We established a system to monitor the fluxes of glutathione from the cytosol to the ER in S. cerevisiae. To artificially increase fluxes of glutathione, we used a cell over-expressing the GSH plasma membrane transporter HGT1, which when grown in presence of glutathione import high levels of this compound. Consequently, we monitored the intracellular relocation of imported GSH by following GSH fluxes using two specific redox probes. Our data indicate that:(i) GSH is transported into the ER by facilitated diffusion along a concentration gradient. GSSG can also be imported into the ER. Similarly, stress conditions that stimulate GSH synthesis, such as heat shoc, arsenite treatment, also triggered a GSH import in the ER.(ii) GSH import in the ER is achieved by the translocon Sec61, and is regulated by the lumenal chaperone Kar2.(iii) A rapid reduction of glutathione ER redox state leads to the activation of a non-apoptotic programmed cell death pathway, usually observed during high ER stress.
5

Resposta antioxidante de raÃzes de arroz deficientes em peroxidases de ascorbato do citosol aos estresses salino e osmÃtico / Antioxidant responses of roots from rice plants deficient in cytosolic ascorbate peroxidases exposed to salt and osmotic stresses

Juliana Ribeiro da Cunha 15 July 2014 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Os estresses salino e osmÃtico sÃo responsÃveis por perdas significativas na produÃÃo agrÃcola, particularmente nas regiÃes semiÃridas. Nessas condiÃÃes, a raiz à o ÃrgÃo da planta que sofre os primeiros efeitos e à responsÃvel pela percepÃÃo e sinalizaÃÃo bioquÃmica dos estresses. Em folhas, as peroxidases do ascorbato do citosol sÃo as principais isoformas envolvidas com a proteÃÃo antioxidativa contra o excesso de H2O2 e sÃo tambÃm relacionadas na sinalizaÃÃo em condiÃÃes de estresses. Entretanto, esses mecanismos de aÃÃo em raÃzes sÃo pouco conhecidos. O objetivo deste estudo foi testar a hipÃtese de que as APXs citosÃlicas sÃo essenciais para a proteÃÃo antioxidativa de raÃzes de arroz expostas Ãs condiÃÃes de estresse salino e osmÃtico. Para isso, plantas transgÃnicas silenciadas nas duas isoformas de APXs citosÃlicas (APX1/2) e plantas nÃo transformadas (45 dias de idade) foram expostas a duas condiÃÃes de estresse: (1) NaCl e manitol em concentraÃÃes iso-osmÃticas (-0,62 MPa) durante oito dias e (2) manitol 268 mM (-0,62 MPa) por dois dias. Em plantas silenciadas, a quantidade de transcritos (RNAs) de OsAPX1 e OsAPX2 foi reduzida em 90% enquanto que a abundÃncia das duas proteÃnas mensurada por western blotting nÃo foi detectÃvel. A atividade total de APX foi diminuÃda em 66% em comparaÃÃo com as NTs na condiÃÃo controle, evidenciando que o silenciamento foi efetivo nas raÃzes. Como consequÃncia da deficiÃncia das APX1/2, o nÃvel de H2O2 foi aumentado em 51% comparado com as NTs. Ambos os estresses afetaram de modo similar o crescimento da raiz e parte aÃrea das APX1/2, em comparaÃÃo com as plantas nÃo transformadas (NT). Os valores de danos de membrana nas raÃzes foram aumentados na mesma intensidade nos dois genÃtipos e nos dois tipos de estresses, indicando que as APX1/2 apresentaram mesma sensibilidade aos estresses estudados. Nas plantas NT, as quantidades de transcritos de OsAPX1 e OsAPX2 foram aumentadas discretamente por NaCl e manitol enquanto que a atividade de APX foi aumentada somente pelo NaCl. As plantas APX1/2 mostraram a mesma tendÃncia das NTs quanto a expressÃo e atividade de APX. O aumento na quantidade relativa dos transcritos das outras isoformas de APX, principalmente de OsAPX3, OsAPX5 e OsAPX8, em ambos os genÃtipos sob estresse salino, foi correlacionado com o aumento da atividade da APX. AlÃm disso, outras peroxidases (GPX e GPOD) apresentaram a mesma tendÃncia de aumento de atividade apenas sob estresse salino. Diferentemente, manitol induziu um aumento proeminente na atividade de catalase nas plantas NT enquanto que nas APX1/2 essa enzima jà apresentava atividade aumentada antes do estresse e permaneceu no mesmo nÃvel. As concentraÃÃes de H2O2 foram aumentadas intensamente por manitol e reduzidas na presenÃa de NaCl. O nÃvel de TBARS (indicador de peroxidaÃÃo lipÃdica) foi mantido inalterado na presenÃa dos dois estresses e nos dois tipos de plantas. Os resultados deste estudo, quando analisados em conjunto, mostram que raÃzes de arroz expostas aos estresses salino e osmÃtico exibiram respostas complexas em termos de metabolismo redox. Aparentemente, as duas APXs citosÃlicas nÃo sÃo essenciais para a proteÃÃo antioxidativa, uma vez que as plantas mutantes apresentaram uma performance fisiolÃgica semelhante as plantas NT. As respostas aos dois fatores de estresse, NaCl e manitol, foram contrastantes nos dois genÃtipos, sugerindo que diferentes mecanismos de proteÃÃo antioxidante foram acionados para cada tipo de estresse. / Os estresses salino e osmÃtico sÃo responsÃveis por perdas significativas na produÃÃo agrÃcola, particularmente nas regiÃes semiÃridas. Nessas condiÃÃes, a raiz à o ÃrgÃo da planta que sofre os primeiros efeitos e à responsÃvel pela percepÃÃo e sinalizaÃÃo bioquÃmica dos estresses. Em folhas, as peroxidases do ascorbato do citosol sÃo as principais isoformas envolvidas com a proteÃÃo antioxidativa contra o excesso de H2O2 e sÃo tambÃm relacionadas na sinalizaÃÃo em condiÃÃes de estresses. Entretanto, esses mecanismos de aÃÃo em raÃzes sÃo pouco conhecidos. O objetivo deste estudo foi testar a hipÃtese de que as APXs citosÃlicas sÃo essenciais para a proteÃÃo antioxidativa de raÃzes de arroz expostas Ãs condiÃÃes de estresse salino e osmÃtico. Para isso, plantas transgÃnicas silenciadas nas duas isoformas de APXs citosÃlicas (APX1/2) e plantas nÃo transformadas (45 dias de idade) foram expostas a duas condiÃÃes de estresse: (1) NaCl e manitol em concentraÃÃes iso-osmÃticas (-0,62 MPa) durante oito dias e (2) manitol 268 mM (-0,62 MPa) por dois dias. Em plantas silenciadas, a quantidade de transcritos (RNAs) de OsAPX1 e OsAPX2 foi reduzida em 90% enquanto que a abundÃncia das duas proteÃnas mensurada por western blotting nÃo foi detectÃvel. A atividade total de APX foi diminuÃda em 66% em comparaÃÃo com as NTs na condiÃÃo controle, evidenciando que o silenciamento foi efetivo nas raÃzes. Como consequÃncia da deficiÃncia das APX1/2, o nÃvel de H2O2 foi aumentado em 51% comparado com as NTs. Ambos os estresses afetaram de modo similar o crescimento da raiz e parte aÃrea das APX1/2, em comparaÃÃo com as plantas nÃo transformadas (NT). Os valores de danos de membrana nas raÃzes foram aumentados na mesma intensidade nos dois genÃtipos e nos dois tipos de estresses, indicando que as APX1/2 apresentaram mesma sensibilidade aos estresses estudados. Nas plantas NT, as quantidades de transcritos de OsAPX1 e OsAPX2 foram aumentadas discretamente por NaCl e manitol enquanto que a atividade de APX foi aumentada somente pelo NaCl. As plantas APX1/2 mostraram a mesma tendÃncia das NTs quanto a expressÃo e atividade de APX. O aumento na quantidade relativa dos transcritos das outras isoformas de APX, principalmente de OsAPX3, OsAPX5 e OsAPX8, em ambos os genÃtipos sob estresse salino, foi correlacionado com o aumento da atividade da APX. AlÃm disso, outras peroxidases (GPX e GPOD) apresentaram a mesma tendÃncia de aumento de atividade apenas sob estresse salino. Diferentemente, manitol induziu um aumento proeminente na atividade de catalase nas plantas NT enquanto que nas APX1/2 essa enzima jà apresentava atividade aumentada antes do estresse e permaneceu no mesmo nÃvel. As concentraÃÃes de H2O2 foram aumentadas intensamente por manitol e reduzidas na presenÃa de NaCl. O nÃvel de TBARS (indicador de peroxidaÃÃo lipÃdica) foi mantido inalterado na presenÃa dos dois estresses e nos dois tipos de plantas. Os resultados deste estudo, quando analisados em conjunto, mostram que raÃzes de arroz expostas aos estresses salino e osmÃtico exibiram respostas complexas em termos de metabolismo redox. Aparentemente, as duas APXs citosÃlicas nÃo sÃo essenciais para a proteÃÃo antioxidativa, uma vez que as plantas mutantes apresentaram uma performance fisiolÃgica semelhante as plantas NT. As respostas aos dois fatores de estresse, NaCl e manitol, foram contrastantes nos dois genÃtipos, sugerindo que diferentes mecanismos de proteÃÃo antioxidante foram acionados para cada tipo de estresse. / Salt and osmotic stresses are responsible for significant losses in agriculture, particularly in semiarid regions. In such conditions, roots are the first plant organ in contact with the stress and are responsible for perception and signaling. In leaves, cytosolic ascorbate peroxidases (APX) are the main isoforms involved with antioxidative defence against H2O2 excess and signaling under stressful conditions. Nevertheless, such metabolic mechanisms in roots are still unknown. The aim of this study was to test the hypothesis that cytosolic APX isoforms are essential to antioxidant protection in rice roots exposed to salt and osmotic stresses. To test this hypothesis, rice mutants double silenced for cytosolic APXs (APX1/2) and non-transformed plants, both with 45 day-old, were submitted to two stressful treatments: (1) NaCl and mannitol in iso-osmotic concentrations (-0.62MPa) for eight days and (2) mannitol 268 mM (-0.62MPa) for two days. In mutant plants, OsAPX1 and OsAPX2 transcript amounts (RNAs) were reduced by 90% whereas both protein abundance measured by Western blotting were not detectable. Under control conditions, total APX activity was reduced by 66% in comparison with NT plants, showing that the silencing was effective in roots. In APX1/2 roots, H2O2 level was increased by 51% as a consequence of APX1/2 silencing. Both stresses affected similarly root and shoot growing compared with NT. Membrane damage was increased at the same level in both genotypes and in both stresses, showing that APX1/2 were as sensible as NT plants. In NT roots, OsAPX1 and OsAPX2 transcript amounts was slightly increased by NaCl and mannitol whereas only NaCl increased APX activity. Under salt stress, both genotypes increased other APX isoforms, especially OsAPX3, OsAPX5 and OsAPX8. These increases were correlated with the increased APX activity. In addition, other peroxidases (GPX and GPOD) displayed the same trend as APX, increasing their activity in response to NaCl. On the other hand, mannitol induced a prominent increase in catalase activity in NT plants, while in APX1/2 plants CAT activity did not changed. The H2O2 content was increased in both genotypes exposed to mannitol treatments, and was reduced for NaCl. TBARS level was not altered in the presence of both stresses for both genotypes. This study shows that rice plants exposed to salt or osmotic stresses display complex responses regarding to redox metabolism. Apparently, both cytosolic APXs are not essential to antioxidative protection, since mutant plants presented similar physiological performance to NT plants. The responses to both stresses, NaCl and mannitol, were contrasting for both genotypes, suggesting that different mechanisms of antioxidative protection were triggered for each different stress condition. / Salt and osmotic stresses are responsible for significant losses in agriculture, particularly in semiarid regions. In such conditions, roots are the first plant organ in contact with the stress and are responsible for perception and signaling. In leaves, cytosolic ascorbate peroxidases (APX) are the main isoforms involved with antioxidative defence against H2O2 excess and signaling under stressful conditions. Nevertheless, such metabolic mechanisms in roots are still unknown. The aim of this study was to test the hypothesis that cytosolic APX isoforms are essential to antioxidant protection in rice roots exposed to salt and osmotic stresses. To test this hypothesis, rice mutants double silenced for cytosolic APXs (APX1/2) and non-transformed plants, both with 45 day-old, were submitted to two stressful treatments: (1) NaCl and mannitol in iso-osmotic concentrations (-0.62MPa) for eight days and (2) mannitol 268 mM (-0.62MPa) for two days. In mutant plants, OsAPX1 and OsAPX2 transcript amounts (RNAs) were reduced by 90% whereas both protein abundance measured by Western blotting were not detectable. Under control conditions, total APX activity was reduced by 66% in comparison with NT plants, showing that the silencing was effective in roots. In APX1/2 roots, H2O2 level was increased by 51% as a consequence of APX1/2 silencing. Both stresses affected similarly root and shoot growing compared with NT. Membrane damage was increased at the same level in both genotypes and in both stresses, showing that APX1/2 were as sensible as NT plants. In NT roots, OsAPX1 and OsAPX2 transcript amounts was slightly increased by NaCl and mannitol whereas only NaCl increased APX activity. Under salt stress, both genotypes increased other APX isoforms, especially OsAPX3, OsAPX5 and OsAPX8. These increases were correlated with the increased APX activity. In addition, other peroxidases (GPX and GPOD) displayed the same trend as APX, increasing their activity in response to NaCl. On the other hand, mannitol induced a prominent increase in catalase activity in NT plants, while in APX1/2 plants CAT activity did not changed. The H2O2 content was increased in both genotypes exposed to mannitol treatments, and was reduced for NaCl. TBARS level was not altered in the presence of both stresses for both genotypes. This study shows that rice plants exposed to salt or osmotic stresses display complex responses regarding to redox metabolism. Apparently, both cytosolic APXs are not essential to antioxidative protection, since mutant plants presented similar physiological performance to NT plants. The responses to both stresses, NaCl and mannitol, were contrasting for both genotypes, suggesting that different mechanisms of antioxidative protection were triggered for each different stress condition.
6

Dynamique de l'exoprotéome et homéostasie rédox chez Bacillus cereus : rôle de l'oxydation et réduction des résidus méthionines / TIme dynamics and redox homestatis in Bacillus cereus : role of the oxidation and reduction of the methionine residues

Madeira, Jean-Paul 23 June 2016 (has links)
Bacillus cereus est une bactérie aéro-anaérobie facultative à Gram positif ubiquiste pouvant s’adapter à de nombreux environnements et s’y développer. C’est un agent pathogène de l’homme capable de produire tout un éventail de protéines extracellulaires et de toxines jouant un rôle majeur dans la pathogénicité de ce micro-organisme. B. cereus croit suivant un métabolisme de type respiratoire en aérobiose et fermentaire en anaérobiose en l’absence d’accepteur final d’électrons. En aérobiose, la chaine respiratoire est une source majeure des dérivés réactifs de l'oxygène (ROS) endogènes. En anaérobiose, les ROS endogènes sont générés en réponse au stress oxydant secondaire au stress nutritionnel et au stress réducteur, lorsque les cultures sont réalisées à bas potentiel d’oxydo-réduction (POR). Les résidus méthionines (Met) sont particulièrement sensibles à l’oxydation par les ROS. L’oxydation des Met conduit à la formation de méthionine sulfoxyde (Met(O)), un dérivé oxydé stable détectable par spectrométrie de masse (MS). L'oxydation des résidus Met est réversible : leur réduction est catalysée par des méthionines sulfoxyde réductases (Msr). Pour déterminer le rôle de l’oxydation des résidus Met, nous avons réalisé une étude exhaustive par MS de la dynamique de l’exoprotéome de la souche ATCC 14579 (pBClin 15) de B. cereus en aérobiose (pO2 = 100%) et en anaérobiose (pO2 = 0%) à haut (POR initial = +140 mV) et bas potentiel redox (PORi= -350 mV). Les résultats ont montré que la dynamique des toxines était représentative de la dynamique de l’exoprotéome à la fois en termes d’abondance relative de protéines et d’oxydation des Met dans les trois conditions testées. L’analyse des résultats suggèrent que (i) l’abondance des toxines et leur taux de méthionines oxydés reflètent le niveau d’oxydation cellulaire et (ii) la sécrétion de toxines au cours de la croissance cellulaire contribue au maintien de l'homéostasie redox intracellulaire en piégeant les ROS endogènes, en particulier en phase active de croissance en aérobiose et en fin de croissance en anaérobiose. Pour étayer l’hypothèse selon laquelle, les Met des protéines extracellulaires, et des toxines en particuliers sont des composants de la machinerie cellulaire antioxydante, nous avons construit une souche mutante ne synthétisant plus MsrAB et comparer le protéome et l’exoprotéome de cette souche mutante avec celle de la souche parentale en aérobiose et anaérobiose à haut POR. Cette étude a mis en évidence l’implication de MsrAB mais également du plasmide cryptique pBClin15 dans la sécrétion des toxines et le maintien de l'homéostasie redox intracellulaire / Bacillus cereus is a Gram-positive aerobic or facultative anaerobic worldwide-distributed bacterium. In addition, B. cereus is a human pathogen able to produce a range of extracellular enzymes and toxins playing a major role in the virulence of the bacteria. In presence of oxygen, B. cereus performs respiration. Without oxygen or other electron acceptors, it performs mixed-acid fermentation. Under aerobiosis, the respiratory electron transport chain is a major source of endogenous reactive oxygen species (ROS). Under anaerobiosis, endogenous ROS are generated in response to reductive stress (mainly under high-reductive anaerobiosis) and to starvation (nutrient stress), i.e. in response to secondary oxidative stresses. Methionine residues (Met) of proteins are vulnerable to oxidation by free radicals. Oxidation of Met leads to the formation of methionine sulfoxide (Met (O)), a stable by-product detectable by mass spectrometry (MS). Met(O) can be reduced back to Met by the action of methionine sulfoxide reductase (Msr). To determine the role of oxidation of Met residues, B. cereus exoproteome time courses were monitored by MS under low oxidation-reduction potential (ORP) anaerobiosis (initial ORP = +140 mV and pO2 = 0%), high-ORP anaerobiosis (iORP = -350 mV and pO2 = 0%), and aerobiosis (pO2 = 100%). The results indicated that toxin-related proteins were the most representative of the exoproteome changes, both in terms of protein abundance and their Met(O) content in the presence and in the absence of oxygen. The analysis results suggest that (i) the abundance of toxins and their oxidized methionines rates reflect the cellular oxidation level and (ii) the secretion of toxins during growth helps to maintain redox homeostasis by keeping endogenous ROS at bay, during the exponential growth phase under aerobic conditions and at the end of growth under anaerobiosis. To support our hypothesis that Met residues of extracellular proteins, particulars of toxins are components of the cellular machinery antioxidant, we constructed a mutant strain by deleting the gene of MsrAB and compare the cellular proteome and exoproteome of this mutant strain with the wild-type strain under aerobiosis and high-ORP anaerobiosis. This study highlighted the involvement of MsrAB but also pBClin15 plasmid in the secretion of toxins and maintain of the intracellular redox homeostasis.
7

Rôle de la sélénoprotéine N dans les réseaux de régulation rédox : études physiologique et transcriptomique / Raie of selenoprotein N in redox regulation networks : physiological and transcriptomic studies

Briens, Mickaël 24 October 2014 (has links)
La réponse au stress oxydatif joue un rôle important dans de nombreux processus d’adaptation biologique. Les sélénoprotéines jouent un rôle clef dans le contrôle du stress oxydatif. Des mutations du gène codant pour la sélénoproteine N (SelN) sont la cause de différentes formes de dystrophies musculaires chez l’Homme mais la fonction moléculaire de SelN reste inconnue. Au cours de ma thèse j’ai cherché à déterminer la fonction moléculaire de SelN, et son rôle dans les mécanismes de régulation Rédox. Le modèle de souris Sepn1-/- a constitué l’outil central permettant de répondre à ces objectifs.Les principaux résultats ont révélé une sensibilité particulière des souris Sepn1-/- à certains agents inducteurs de stress oxydatif ou réticulaire. J’ai également caractérisé le modèle Sepn1-/- par séquençage haut débit, en comparant les muscles paravertébraux d’animaux Sepn1-/- et sauvages. Les résultats montrent que malgré l’absence de phénotype musculaire, il y a activation de 580 gènes codant pour des protéines secrétées et mettent en avant l’activation d’un certain nombre de voies métaboliques. Ces résultats participent à une meilleure caractérisation du rôle de la sélénoprotéine N dans le réticulum endoplasmique. / Oxidative stress response plays a major function in the adaptation of biological systems. Selenoproteins have a main role in oxidative stress control. Mutations in the gene coding for the selenoprotein N (SelN) cause different muscular dystrophies in Humans but the molecular function of SelN is still unknown. The main objective of my PhD was to determine the molecular function of SelN, and its role in Redox regulation mechanisms. The Sepn1-/- mouse model was a central tool to reach those objectives.The key results revealed a higher sensibility of Sepn1-/- mice to specific oxidative or reticular stress inducers. Moreover, the Sepn1-/- mouse model was characterized by high throughput sequencing, comparing gene expression of paravertebral muscle of Sepn1-/- and wild type animals. Results showed activation of 580 genes in Sepn1-/- mice despite the absence of muscular phenotype in those conditions. Activated genes are coding for secreted proteins and indicated the activation of several metabolic pathways. Those results participated to Sel N function determination in the endoplasmic reticulum.
8

Mitochondriale Redoxhomöostase in hippocampalen Neuronen MeCP2-defizienter Mäuse / Mitochondrial redox homeostasis in hippocampal neurons of MeCP2-deficient mice

Festerling, Karina 31 December 1100 (has links)
No description available.
9

Photosynthetic and Fermentative Bacteria Reveal New Pathways for Biological Mercury Reduction

Grégoire, Daniel 18 January 2019 (has links)
Mercury (Hg) is a global pollutant and potent neurotoxin that bioaccumulates in aquatic and terrestrial food webs as monomethylmercury (MeHg). Anaerobic microbes are largely responsible for MeHg production, which depends on the bioavailability of inorganic Hg substrates to methylators. Hg redox cycling pathways such as Hg reduction play a key role in determining Hg’s availability in the environment. Although abiotic photochemical Hg reduction typically dominates in oxic surface environments, Hg reduction pathways mediated by photosynthetic and anaerobic microbes are thought to play an important role in anoxic habitats where light is limited and MeHg production occurs. Currently, the physiological mechanisms driving phototrophic and anaerobic Hg reduction remain poorly understood. The main objective of my thesis is to provide mechanistic details on novel anaerobic and phototrophic Hg reduction pathways. I used a combination of physiological, biochemical and trace Hg analytical techniques to study Hg reduction pathways in a variety of anaerobic and photosynthetic bacteria. I demonstrated that Hg redox cycling was directly coupled to anoxygenic photosynthesis in aquatic purple non-sulphur bacteria that reduced HgII when cells incurred a redox imbalance. I discovered that terrestrial fermentative bacteria reduced Hg through pathways that relied on the generation of reduced redox cofactors. I also showed that sulphur assimilation controlled Hg reduction in an anoxygenic phototroph isolated from a rice paddy. In addition, I developed methods to explore cryptic anaerobic Hg redox cycling pathways using Hg stable isotope fractionation. At its core, my thesis underscores the intimate relationship between cell redox state and microbial Hg reduction and suggests a wide diversity of microbes can participate in anaerobic Hg redox cycling.
10

Compensation for chronic oxidative stress in ALADIN null mice

Jühlen, Ramona, Peitzsch, Mirko, Gärtner, Sebastian, Landgraf, Dana, Eisenhofer, Graeme, Huebner, Angela, Koehler, Katrin 08 June 2018 (has links) (PDF)
Mutations in the AAAS gene coding for the nuclear pore complex protein ALADIN lead to the autosomal recessive disorder triple A syndrome. Triple A patients present with a characteristic phenotype including alacrima, achalasia and adrenal insufficiency. Patient fibroblasts show increased levels of oxidative stress, and several in vitro studies have demonstrated that the nucleoporin ALADIN is involved in both the cellular oxidative stress response and adrenal steroidogenesis. It is known that ALADIN knock-out mice lack a phenotype resembling human triple A syndrome. The objective of this study was to determine whether the application of chronic oxidative stress by ingestion of paraquat would generate a triple A-like phenotype in ALADIN null mice. Adult male mice were fed either a paraquat (0.25 g/kg diet) or control diet for 11 days. After application of chronic oxidative stress, ALADIN knock-out mice presented with an unexpected compensated glutathione metabolism, but lacked a phenotype resembling human triple A syndrome. We did not observe increased levels of oxidative stress and alterations in adrenal steroidogenesis in mice depleted for ALADIN. This study stresses the species-specific role of the nucleoporin ALADIN, which in mice involves a novel compensatory mechanism for regulating the cellular glutathione redox response.

Page generated in 0.0701 seconds