• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Le rôle des cellules souches mésenchymateuses médullaires dans la leucémie myélomonocytaire chronique / The Role of Bone Marrow Mesenchymal Stem Cells in Chronic Myelomonocytic Leukemia

Jego, Chloé 30 October 2019 (has links)
La leucémie myélomonocytaire chronique (LMMC) est une hémopathie myéloïde rare du sujet âgé. Les caractéristiques cliniques, génétiques et moléculaires de la maladie sont bien connues. L’expression très hétérogène de la maladie ne peut être expliquée par la seule hétérogénéité génétique du clone leucémique. Les altérations épigénétiques jouent manifestement un rôle important. Le rôle de facteurs extrinsèques issus du microenvironnement est plus obscur. La niche hématopoïétique est le siège d’interactions entre cellules. Deux schémas non-exclusifs d’altération primaire ou secondaire de la niche sont proposés. Le premier implique que l’émergence d’un clone hématopoïétique modifie son environnement. Le second postule que le premier évènement dans l’émergence d’une hémopathie clonale est une altération de l’environnement. Mon travail de thèse a étudié les altérations du microenvironnement médullaire chez les patients et leur impact sur la physiopathologie de la maladie selon 2 axes: 1) la mise au point d’un modèle murin de reconstitution de la niche hématopoïetique humaine et 2) la caractérisation des cellules souches mésenchymateuses des patients. Dans une première partie, j’ai transposé un modèle rapporté en 2016 à l’étude de la LMMC. Ce modèle de greffe de cellules médullaires humaines chez la souris immunodéprimée s’est avéré difficilement reproductible. Dans la seconde partie, j’ai analysé les cellules souches mésenchymateuses de patients atteints de LMMC. J’ai identifié la production excessive d’IGFBP2 (Insuline-like Growth Factor Binding Protein 2), conséquence probable d’une dérégulation épigénétique. Le séquençage des CSM à l’échelle unicellulaire a révélé une restriction de l’hétérogénéité de ces cellules dont une fraction seulement produit IGFBP2. Finalement, j’ai montré qu’IGFBP2 favorise la différenciation des progéni-teurs myéloïdes vers la lignée monocytaire. IGFBP2 pourrait donc contribuer à amplifier la monocytose caractéristique de cette maladie.En conclusion, la LMMC s’accompagne de modifications des cellules de la niche hématopoÏétique dont certaines produisent des quantités excessive d’IGFBP2. La recherche de l’origine de ce dérèglement et de son importance dans la progression de la maladie permettra d’évaluer l’intérêt potentiel d’une neutralisation de cette cytokine à des fins thérapeutiques. / Chronic myelomonocytic leukemia (CMML, is a rare myeloid hemopathy of the elderly. Clinical, genetic and molecular characteristics of the disease are well-known. The highly heterogeneous expression of the disease can’t be solely explained by genetic heterogeneity of the leukemic clone. Epigenetic alterations obviously play an important role. However, the role of extrinsic factors from the medullar microenvironment in CMML physiopathology is still poorly understood. The hematopoietic niche hosts a lot of bi-directionnal interactions between cells. Two non-exclusive schemes of primary and secondary alterations of the niche can be proposed. First postulate implies that the emergence of a hematopoietic clone alters its environment. The second one supposes that the first event causing the emergence of a clonal hemopathy is an alteration of the environment. My PhD work consisted of studying medullar alterations in patients and their impact on CMML physiopathology upon 2 axes: 1) to set up a murine model of human hematopoietic niche reconstitution 2) to caracterise mesenchymal stem cells from CMML patient ex vivo. During the first part of my PhD, I adapted a model published in 2016 to CMML. This model of human MSC graft in immunodeficient mice proved to be hardly reproducible. During the second part, I analysed of CMML patients MSC. I identified an excessive production of IGFBP2 (Insuline-like Growth Factor Binding Protein 2) probably secondary to an epigenetic disregulation. Single cell RNA sequencing revealed a restriction of MSC heterogeneity of which only a fraction produces IGFBP2. Finally, I showed that IGFBP2 favors myeloid progenitors differenciation towards monocytic lineage. IGFBP2 could therefore contribute to the amplification of CMML characteristic monocytosis.To conclude, CMML goes along with modifications of hematopoietic niche cells, some of which produce excessive amounts of IGFBP2. Investigation on the origin of this alteration and its significance in disease progression should allow to evaluate the potential interest of its neutralization for therapeutic strategies.
2

Contrôle de la dynamique de la leucémie myéloïde chronique par Imatinib / Control of the dynamics of chronic myeloid leukemia by Imatinib

Benosman, Chahrazed 18 November 2010 (has links)
Dans ce travail de recherche, nous sommes intéresses par la modélisation de l'hématopoïèse. Les cellules souches hématopoïétiques (CSH) sont des cellules indifférenciées de la moelle osseuse, possédant la capacité de se renouveler et de se différencier (pour la production des globules rouges, globules blancs et les plaquettes). Le processus de l'hématopoïèse souvent révèle des irrégularités qui causent les maladies hématologiques. En modélisant la leucémie myéloide chronique (LMC), une maladie hématologique fréquente, nous représentons l'hématopoïèse des cellules normales et cancéreuses par un système d'équations différentielles ordinaires (EDO). L'homéostasie des cellules normales et différente de l'homéostasie des cellules cancéreuses, et dépend de quelques lignées des cellules normales et cancéreuses. Nous analysons la dynamique globale du modèle pour obtenir les conditions de régénération de l'hématopoïèse ou bien la persistance de la LMC. Nous démontrons aussi que la coexistence des cellules normales et cancéreuses ne peut avoir lieu pour longtemps. Imatinib est un traitement de base de la LMC, avec un dosage variant de 400 à 1000 mg par jour. Certains patients présentent des réponses différentes à la thérapie, pouvant être hématologique, cytogénétique et moléculaire. La thérapie échoue dans deux cas: le patient demande un temps plus long pour réagir, alors il s'agit d'une réponse suboptimale; ou bien le patient résiste après une bonne réponse initiale. Pour déterminer le dosage optimal, nécessaire à la réduction des cellules cancéreuses, nous représentons les effets de la thérapie par un problème de contrôle optimal. Notre but est de minimiser le cout du traitement et le nombre des cellules cancéreuses. La réponse suboptimale, la résistance et le rétablissement sont alors obtenus suivant l'influence de l'imatinib sur les taux de division et de mortalité des cellules cancéreuses. Nous étudions par ailleurs l'hématopoïèse selon un modèle structuré en age, décrivant l'évolution des CSH normales et cancéreuses. Nous démontrons que le taux de division des CSH cancéreuses joue un rôle important dans la détermination du contrôle optimal. En contrôlant la croissance des cellules normales et cancéreuses avec compétition inter spécifique, nous démontrons que le dosage optimal dépend de l'homéostasie des CSH cancéreuses. / Modelling hematopoiesis represents a feature of our research. Hematopoietic stem cells (HSC) are undifferentiated cells, located in bone marrow, with unique abilities of self-renewal and differentiation (production of white cells, red blood cells and platelets).The process of hematopoiesis often exhibits abnormalities causing hematological diseases. In modelling Chronic Myeloid Leukemia (CML), a frequent hematological disease, we represent hematopoiesis of normal and leukemic cells by means of ordinary differential equations (ODE). Homeostasis of normal and leukemic cells are supposed to be different and depend on some lines of normal and leukemic HSC. We analyze the global dynamics of the model to obtain the conditions for regeneration of hematopoiesis and persistence of CML. We prove as well that normal and leukemic cells can not coexist for a long time. Imatinib is the main treatment of CML, with posology varying from 400 to 1000 mg per day. Some affected individuals respond to therapy with various levels being hematologic, cytogenetic and molecular. Therapy fails in two cases: the patient takes a long time to react, then suboptimal response occurs; or the patient resists after an initial response. Determining the optimal dosage required to reduce leukemic cells is another challenge. We approach therapy effects as an optimal control problem to minimize the cost of treatment and the level of leukemic cells. Suboptimal response, resistance and recovery forms are obtained through the influence of imatinib onto the division and mortality rates of leukemic cells. Hematopoiesis can be investigated according to age of cells. An age-structured system, describing the evolution of normal and leukemic HSC shows that the division rate of leukemic HSC plays a crucial role when determining the optimal control. When controlling the growth of cells under interspecific competition within normal and leukemic HSC, we prove that optimal dosage is related to homeostasis of leukemic HSC.

Page generated in 0.1158 seconds