• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 143
  • 35
  • 32
  • 23
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 273
  • 273
  • 273
  • 64
  • 50
  • 37
  • 36
  • 36
  • 34
  • 33
  • 31
  • 31
  • 31
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Hematopoietic Stem Cell Differentiation inside Extracellular Matrix functionalized Microcavities

Kurth, Ina 03 May 2011 (has links)
The bone marrow (BM) niche provides hematopoietic stem (HSC) and progenitor cells with many exogenous cues that tightly regulate homeostasis. These cues orchestrate cellular decisions, which are difficult to dissect and analyze in vivo. This thesis introduces a novel in vitro platform that permits systematic studies of BM-relevant factors that regulate homeostasis. Specifically, the role of 3D patterned adhesion ligands and soluble cytokines were studied in a combinatorial fashion. Analysis of human HSC differentiation and proliferation at both population and single cell level showed synergistic and antagonistic effects of adhesion- and cytokine-related signals. Those effects were dependent on the cytokine concentration and the distribution and number of adhesion ligands. The aim of this thesis was to model the in vivo bone marrow with its porous 3D structure and different sized niche compartments using a microcavity culture carrier. The developed culture system presented extracellular matrix (ECM) adhesion ligands to the HSCs in various defined dimensions ranging from single- to multi-cell capacity. The 3D open well geometry of the microcavity carriers also allowed HSCs to freely explore different scenarios including homing, migration, adhesion, or suspension. Furthermore, the developed setup offered straightforward accessibility to analytical methods like cytometry and quantitative microscopy. Single cell analysis of adherent HSCs showed decreased DNA synthesis and higher levels of stem cell marker expression within single cell microcavities under low cytokine conditions . This effect was reflected in a decline of proliferation and differentiation with decreasing microcavity size. When the cytokine concentration was increased2 beyond physiological levels the inhibitory effect on proliferation and differentiation due to single-cell-microcavity adherence was diminished. This result highlighted the fine balance between adhesion related and soluble cues regulating HSC fate. Within small microcavities more adhesion related receptors were engaged due to the 3D character of the culture carrier compared to multi-cell wells or conventional 2D cell culture plates. This study demonstrated that adhesion-related signal activation leads to reduced proliferation and differentiation. This geometry-based effect could be reversed by increased cytokine supplementation in the culture media. For plane substrates, HSCs attachment to fibronectin or heparin initiated early cell cycle entry compared to non-adherent cells during the initial 24h. Cytokine supplemented media favored integrin activation that induced fast adhesion, ultimately leading to early cell cycle activation. However, after prolonged cell culture the system balanced itself with a lower cycling rate of adherent versus non-adherent HSCs. Furthermore, HSCs within the 3-dimensionality of the microcavities cycled less than 2D adherent cells. These findings additionally supported the above stated idea of limited HSC proliferation as a consequence of more adhesion-related signals overwriting cytokine driven expansion. To complement the various in vitro studies, an in vivo repopulation study was performed. Cultured HSCs derived from single cell microcavities outperformed freshly isolated HSCs in a competitive repopulation assay, indicating that carefully engineered substrates are capable of preserving stem cell potential. Overall the reported findings provide a promising in vitro culture strategy that allows the stem cell field to gain a better understanding of the impact of distinct exogenous signals on human HSCs, which discloses new concepts for the wide scientific community working towards tissue engineering and regenerative medicine.:Kurzbeschreibung 4 Abstract 6 1 Introduction 8 1.1 Motivation 8 1.2 Objective 8 2 Basics 10 2.1 Stem Cells and their Role in Life 10 Stem Cells and their Niches 12 2.1.1 Hematopoietic Stem Cells 12 2.1.2 Hematopoietic Stem Cell Niche 14 2.1.3 The ECM Relevancy 16 2.1.4 HSC Relevant Cytokines 19 2.2 Cell Culture Scaffolds 21 2.2.1 General 2D, 3D 21 2.2.2 Substrate Engineering 22 2.2.3 Co-Culture versus the Artificial 3D Niche 23 3 Materials and Methods 25 3.1 Chemicals, Reagents and Equipment 25 3.2 Wafer Design and Surface Functionalization 29 3.3 Cell Culture and Analysis 31 3.3.1 HSC Culture in ECM-functionalized Microcavities 32 3.4 Surface Passivation 33 3.5 Mouse Bone Marrow Preparation 35 4 Results and Discussion 37 4.1 Scaffold Design and Preparation 37 4.1.1 Surface Characterization 37 4.1.2 Surface Passivation 39 Approaches for Surface Passivation 39 Efficiency of Surface Passivation 39 4.1.3 Redesigned Microcavities 43 4.2 Summarized Discussion of the Surface Passivation 44 4.3 HSC Culture inside Microcavities 45 4.3.1 HSC-ECM Interaction Reduces Proliferation 45 4.3.2 Population-wide Proliferation and Differentiation of Spatially Constrained HSCs . … 46 HSCs within Redesigned Microcavities 48 4.3.3 Colony-forming Ability of Microcavity Cultures 50 4.4 Single Cell Analysis of Differentiation 52 4.5 Cell Cycling Dependency on Cytokine Level 53 4.5.1 Plane Surfaces 54 4.5.2 Microcavities Reduce Cycling Frequency 57 4.6 Mice Repopulation of Microcavity Cultured HSCs 58 4.7 Summarized Discussion of the HSC–ECM Relation 60 4.8 Future Prospects 62 5 Summary 63 References 64 Figure Legend 73 Tables 73 Theses 74 6 Appendices I 6.1 FACS Principle I 6.1.1 HSC Staining for CD Marker and Cell Cycle Kinetics I 6.1.2 Apoptosis Test II 6.2 Differentiation and Proliferation on Redesigned Microcavities III 6.3 Colony-forming Capability of Microcavity Cultured Cells IV 6.4 Effect of Trypsin on HSC Properties in Long Term Culture IV 6.5 Surface Functionalization with SCF V 6.5.1 Analysis of the HSCs Grown on Immobilized SCF VI 6.5.2 SCF Immobilization and its Kinetics VII 6.5.3 c-kit Expression Kinetics and HSC Differentiation VIII Short Discussion on the Growth Factor Immobilization IX Publications X Posters X Proceedings XI Talks XI Patents XI Papers XI Awards XI 7 Danksagung: XII Selbstständigkeitserklärung: XIII / Die Homöostase der Hämatopoietischen Stamm- und Vorläuferzellen (HSC) in der Knochenmark Nische wird von einer Vielzahl exogener Faktoren gezielt reguliert. Diese Faktoren orchestrieren intrazelluläre Vorgänge, deren in vivo Analyse kompliziert ist. Die vorliegende These widmet sich einem neuen biotechnologischen Ansatz, der systematische Studien von Knochenmark-relevanten Faktoren ermöglicht. Im Speziellen wurde die Rolle 3D-präsentierter Zell Adhäsionsliganden in Kombination mit verschiedenen Konzentrationen löslicher Zytokine untersucht. Die Auswertung der Proliferation und Differenzierung von humanen HSC auf Einzelzell- und Populationsebene offenbarte die synergistischen und antagonistischen Effekte von Adhäsions- und Zytokinsignalen in ihrer Abhängigkeit von der Verteilung und der Anzahl von Adhäsionsliganden sowie der Zytokinkonzentration. Um die poröse Struktur des Knochenmarks in vivo-ähnlich darzustellen, wurde eine Zellkultur Plattform mit Mikrokavitäten verschiedenster Dimensionen von Multi- bis Einzelzellgröße entwickelt und mit Molekülen der extrazellulären Matrix beschichtet. Die Vorteile dieser Plattform liegen in der offenen 3D-Geometrie dieses mikrokavitäten Kultursystems, die den Zellen ermöglichte verschiedene Wachstumsbedingungen bezüglich Homing, Migration, Adhäsion oder Suspension frei zu erkunden. Das leicht zugängliche Setup eignete sich zudem hervorragend für die zytometrische Analyse der Zellen oder die quantitative Mikroskopie. Die Einzelzellanalyse adhärenter HSC ergab eine Reduktion von DNA Synthese und eine höhere Expression von Stammzelloberflächenfaktoren innerhalb der Einzelzell-Mikrokavitäten bei niedrigen Zytokinkonzentrationen . Dieser Effekt spiegelte sich auch auf Populationsebene in verminderter Proliferation und Differenzierung mit abnehmender Größe der Mikrokavitäten wider. Wurde die Zytokinkonzentration jedoch weit über physiologische Bedingungen erhöht, verminderte sich der Effekt (reduzierte DNA Synthese und höhere Stammzellfaktorexpression) beschrieben für die Einzelzellmikrokavitäten. Dieses Ergebnis verdeutlicht die empfindliche intrazelluläre Balance, vermittelt durch Adhäsionsignale und löslichen Faktoren, die das Verhalten von HSCs regulieren. Aufgrund des 3D-Charakters des Zellkulturträgers wurden innerhalb kleiner Mikrokavitäten mehr Adhäsionsrezeptoren ringsum die Zelle aktiviert. Dieser Vorteil gegenüber den Multizellkavitäten oder der herkömmlichen 2D–Zellkultur ermöglichte eine hohe Anzahl adhäsionsvermittelter Signale mit entsprechend höherer Proliferations-inhibitorischer Wirkung. Je höher die Konzentration der Zytokine war, desto stärker erfolgte die Stimulation der Proliferation und Differenzierung. Auf 2D Substraten, initiierte Adhäsion zu Fibronektin und Heparin innerhalb der ersten 24h einen frühen Zell-Zyklus-Start im Gegensatz zu nicht adhärenten Zellen. Die Zytokine im Zellmedium förderten die Integrin Aktivierung, was zu einer schnellen Zelladhäsion führte. Die Adhäsionsrezeptoren wiederum kooperieren mit Zytokinrezeptoren im Zellinneren und begünstigten damit einen zeitigeren Zell-Zyklus- Start. Allerdings stellte sich danach ein Gleichgewicht im Kultursystem ein, wobei weniger adhärente Zellen als nicht-adhärente Zellen den Zellzyklus durchliefen. Des Weiteren war die Zellzyklusrate innerhalb von 3D Mikrokavitäten niedriger verglichen mit herkömmlichen 2D Substraten. Diese Ergebnisse bestätigen ferner obenstehende These, dass Zytokin-induzierte Zellexpansion durch erhöhte Zelladhäsions-vermittelte Signale überschrieben wird. Um die in vitro Studien zu komplettieren wurde ein in vivo Repopulationsversuch durchgeführt. HSC kultiviert auf Einzel-Zell-Mikrokavitäten übertrafen frisch isolierte Konkurrenz-Zellen in einem kompetitiven Repopulationsversuch. Dieses erste Ergebnis zeigt, dass sich der Zellgröße entsprechende Biomaterialien für die erfolgreiche Stammzell-Kultur eignen. Die Ergebnisse dieser Arbeit bieten eine vielversprechende in vitro Zellkulturstrategie, die ein besseres Verständnis der Einflüsse von exogenen Signalen auf HSC erlaubt und damit eine Grundlage für neue Erkenntnisse in Richtung erfolgreicheres Tissue Engineering und klinische Anwendungen im Bereich der regenerativen Medizin bildet.:Kurzbeschreibung 4 Abstract 6 1 Introduction 8 1.1 Motivation 8 1.2 Objective 8 2 Basics 10 2.1 Stem Cells and their Role in Life 10 Stem Cells and their Niches 12 2.1.1 Hematopoietic Stem Cells 12 2.1.2 Hematopoietic Stem Cell Niche 14 2.1.3 The ECM Relevancy 16 2.1.4 HSC Relevant Cytokines 19 2.2 Cell Culture Scaffolds 21 2.2.1 General 2D, 3D 21 2.2.2 Substrate Engineering 22 2.2.3 Co-Culture versus the Artificial 3D Niche 23 3 Materials and Methods 25 3.1 Chemicals, Reagents and Equipment 25 3.2 Wafer Design and Surface Functionalization 29 3.3 Cell Culture and Analysis 31 3.3.1 HSC Culture in ECM-functionalized Microcavities 32 3.4 Surface Passivation 33 3.5 Mouse Bone Marrow Preparation 35 4 Results and Discussion 37 4.1 Scaffold Design and Preparation 37 4.1.1 Surface Characterization 37 4.1.2 Surface Passivation 39 Approaches for Surface Passivation 39 Efficiency of Surface Passivation 39 4.1.3 Redesigned Microcavities 43 4.2 Summarized Discussion of the Surface Passivation 44 4.3 HSC Culture inside Microcavities 45 4.3.1 HSC-ECM Interaction Reduces Proliferation 45 4.3.2 Population-wide Proliferation and Differentiation of Spatially Constrained HSCs . … 46 HSCs within Redesigned Microcavities 48 4.3.3 Colony-forming Ability of Microcavity Cultures 50 4.4 Single Cell Analysis of Differentiation 52 4.5 Cell Cycling Dependency on Cytokine Level 53 4.5.1 Plane Surfaces 54 4.5.2 Microcavities Reduce Cycling Frequency 57 4.6 Mice Repopulation of Microcavity Cultured HSCs 58 4.7 Summarized Discussion of the HSC–ECM Relation 60 4.8 Future Prospects 62 5 Summary 63 References 64 Figure Legend 73 Tables 73 Theses 74 6 Appendices I 6.1 FACS Principle I 6.1.1 HSC Staining for CD Marker and Cell Cycle Kinetics I 6.1.2 Apoptosis Test II 6.2 Differentiation and Proliferation on Redesigned Microcavities III 6.3 Colony-forming Capability of Microcavity Cultured Cells IV 6.4 Effect of Trypsin on HSC Properties in Long Term Culture IV 6.5 Surface Functionalization with SCF V 6.5.1 Analysis of the HSCs Grown on Immobilized SCF VI 6.5.2 SCF Immobilization and its Kinetics VII 6.5.3 c-kit Expression Kinetics and HSC Differentiation VIII Short Discussion on the Growth Factor Immobilization IX Publications X Posters X Proceedings XI Talks XI Patents XI Papers XI Awards XI 7 Danksagung: XII Selbstständigkeitserklärung: XIII
192

Characterization of Novel Lymphoid-Associated Genes Identified by Gene-Trapping: a Dissertation

James, Pamela 25 April 2006 (has links)
The discovery of novel genes involved in hematopoietic development and lymphoid function is necessary for the understanding of these systems. To this end, we utilized transmembrane protein-specific gene trapping in embryonic stem (ES) cells, a method of forward genetics, to identify a novel, complex locus from which several splice variants arise. The trapped locus identified in the KST30 ES cell clone encodes several genes including outer membrane protein 25 (OMP25) and activin receptor interacting protein (ARIP2) and two novel genes, AK74 and AK88. AK74 is highly conserved between human and mouse with 85% identity at the amino acid level. The human homolog was cloned from CD34+ cord blood hematopoietic stem cell progenitors (HSCPs) implying that it may have a role in the hematopoietic system. We generated mice from the gene trapped ES cells, called KST30 mice, to analyze the expression pattern of transcripts from the trapped locus in the hematopoietic system. Utilizing the gene trap LacZ reporter and RT-PCR, we found that AK88 and AK74 are expressed in hematopoietic stem cells and thymocytes and that AK88 and ARIP2 are dramatically up-regulated in activated Band T lymphocytes. In addition, we found restricted expression of the gene trap in most non-lymphoid tissues. Interestingly, the expression pattern of the gene trap coincides with the expression of activin signaling components in many cell types including thymocytes, activated B cells, hematopoietic stem cells and the ductal cells of the pancreas. AK74, AK88 and ARIP2 share two exons that encode a 44 amino acid region. ARIP2 negatively regulates activin signaling through endocytosis of Activin type II receptors. The N-terminal PDZ domain associates with ActRII and mediates endocytosis via association with RalBP1. The region of ARIP2 that associates with RalBP1 encompasses the 44 amino acid region also found in AK74 and AK88, suggesting that these proteins may also associate with RalBP1, perhaps sequestering it from ARIP2. This possibility combined with the similarities between gene trap expression and expression of the components of activin signaling indicates a role of the trapped genes in activin signaling. AK74 and AK88 have a signal sequence and transmembrane domain that are predicted to direct them to mitochondria. To confirm this prediction, we examined the subcellular localization of AK74 and found that it localizes to a punctate, perinuclear structure identified as mitochondria using a mitochondria specific dye. AK74 was not seen in the cytoplasm, nucleus or at the plasma membrane of cells. To determine the function of these novel genes, AK74 was retrovirally over-expressed in a double positive thymoma cell line and examined the global expression profile using Affymetrix gene chip. AK74 changed the expression levels of 36 genes greater than 3-fold compared to vector alone. Of these genes, several are involved in cytoskeletal rearrangement, apoptosis or are regulated by calcium signaling. Using yeast two-hybrid, several candidate binding partners for AK74 were identified, one of which is the receptor for activated protein kinase C (RACK1). RACK1 was also identified as a potential binding partner for AK88. RACK1 is a WD40 domain-containing scaffolding protein that has been implicated in many pathways but most prominently in the protein kinase C signaling pathway. Association with RACK1 by either AK74 or AK88 suggests that they may be involved in RACK1 function. Both RACK1 and PKC are involved with Ca2+ signaling through different mechanisms. This, combined with global gene expression changes in AK74 over-expressing cells suggests a role for AK74, AK88 or ARIP2 in Ca2+ signaling. When we examined the expression of the trapped genes in mice homozygous for the gene-trapped allele (KST30tr/tr) we found that insertion of the gene trap caused a severe decrease in AK88 and ARIP2 but not AK74 transcripts. Analysis of KST30tr/tr mice showed no abnormalities in conventional lymphoid populations and precursors, however, intraepithelial lymphocyte (IEL) populations were altered by the loss of AK88 and/or ARIP2. There was an approximate 2-fold decrease CD8αα+ T cells in the small intestine while CD8αβ+ T cells were largely unaltered. Using gene trap technology, we have identified two novel, mitochondria-localized proteins. The cumulative findings described in this thesis, including the homology between AK74, AK88 and ARIP2, their expression pattern and the phenotype of KST30tr/tr mice, suggest possible roles of AK74 and AK88 in diverse pathways.
193

CD166 modulates disease progression and osteolytic disease in multiple myeloma

Xu, Linlin 16 March 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Multiple myeloma (MM) is an incurable malignancy characterized by the proliferation of neoplastic plasma cells in the bone marrow (BM) and by multiple osteolytic lesions throughout the skeleton. We previously reported that CD166 is a functional molecule on normal hematopoietic stem cells (HSC) that plays a critical role in HSC homing and engraftment, suggesting that CD166 is involved in HSC trafficking and lodgment. CD166, a member of the immunoglobulin superfamily capable of mediating homophilic interactions, has been shown to enhance metastasis and invasion in several tumors. However, whether CD166 is involved in MM and plays a role in MM progression has not been addressed. We demonstrated that a fraction of all human MM cell lines tested and MM patients’ BM CD138+ cells express CD166. Additionally, CD166+ cells preferentially home to the BM of NSG mice. Knocking-down (KD) CD166 expression on MM cells with shRNA reduced their homing to the BM. Furthermore, in a long-term xenograft model, NSG mice inoculated with CD166KD cells showed delayed disease progression and prolonged survival compared to mice receiving mock transduced cells. To examine the potential role of CD166 in osteolytic lesions, we first used a novel Ex Vivo Organ Culture Assay (EVOCA) which creates an in vitro 3D system for the interaction of MM cells with the bone microenvironment. EVOCA data from MM cells lines as well as from primary MM patients’ CD138+ BM cells demonstrated that bone osteolytic resorption was significantly reduced when CD166 was absent on MM cells or calvarial cells. We then confirmed our ex vivo findings with intra-tibial inoculation of MM cells in vivo. Mice inoculated with CD166KD cells had significantly less osteolytic lesions. Further analysis demonstrated that CD166 expression on MM cells alters bone remodeling by inhibiting RUNX2 gene expression in osteoblast precursors and increasing RANKL to OPG ratio in osteoclast precursors. We also identified that CD166 is indispensable for osteoclastogenesis via the activation of TRAF6-dependent signaling pathways. These results suggest that CD166 directs MM cell homing to the BM and promotes MM disease progression and osteolytic disease. CD166 may serve as a therapeutic target in the treatment of MM.
194

Theoretical studies on the lineage specification of hematopoietic stem cells

Glauche, Ingmar 05 November 2010 (has links)
Hämatopoetische Stammzellen besitzen die Fähigkeit, die dauerhafte Erhaltung ihrer eigenen Population im Knochenmark zu gewährleisten und gleichzeitig zur Neubildung der verschiedenen Zelltypen des peripheren Blutes beizutragen. Die Sequenz von Entscheidungsprozessen, die den Übergang einer undifferenzierten Stammzelle in eine funktionale ausgereifte Zelle beschreibt, wird als Linienspezifikation bezeichnet. Obwohl viele Details zu den molekularen Mechanismen dieser Entscheidungsprozesse mittlerweile erforscht sind, bestehen noch immer große Unklarheiten, wie die komplexen phänotypischen Veränderungen hervorgerufen und reguliert werden. Im Rahmen dieser Dissertation wird ein geeignetes mathematisches Modell der Linienspezifikation hämatopoetischer Stammzellen entwickelt, welches dann in ein bestehendes Modell der hämatopoetischen Stammzellorganisation auf Gewebsebene integriert wird. Zur Verifizierung des theoretischen Modells werden Simulationsergebnisse mit verschiedenen experimentellen Daten verglichen. Der zweite Teil dieser Arbeit konzentriert sich auf die Beschreibung und Analyse der Entwick- lungsprozesse von Einzelzellen, die aus diesem integrierten Modell hervorgehen. Aufbauend auf den entsprechenden Modellsimulationen wird dazu eine topologische Charakterisierung der resultierenden zellulären Genealogien etabliert, welche durch verschiedener Maße für deren Quantifizierung ergänzt wird. Das vorgestellte mathematische Modell stellt eine neuartige Verknüpfung der intrazellulären Linienspezifikation mit der Beschreibung der hämatopoetischen Stammzellorganisation auf Populationsebene her. Dadurch wird das Stammzellm- odell von Röder und Löffler um die wichtige Dimension der Linienspezifikation ergänzt und damit in seinem Anwendungsbereich deutlich ausgedehnt. Durch die Analyse von Einzelzellverläufen trägt das Modell zu einem grundlegenden Verständnis der inhärenten Heterogenität hämatopoetischer Stammzellen bei.
195

SIRT1 DEFICIENCY COMPROMISES MOUSE EMBRYONIC STEM CELL DIFFERENTIATION, AND EMBRYONIC AND ADULT HEMATOPOIESIS IN THE MOUSE

Ou, Xuan 16 March 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / SIRT1 (Sirtuin 1) is a founding member of a family of seven proteins and histone deacetylases. It is involved in cellular resistance to stress, metabolism, differentiation, aging, and tumor suppression. SIRT1-/- mice demonstrate embryonic and postnatal development defects. We examined hematopoietic and endothelial cell differentiation of SIRT1-/- mouse embryonic stem (mES) cells in vitro, and hematopoietic progenitors in SIRT1+/+, SIRT1+/-, and SIRT1-/- mice. SIRT1-/- ES cells exhibited markedly delayed/immature formation of blast colony-forming cells (BL-CFCs). When individual blast colonies were analyzed for hematopoietic and endothelial potential, replated SIRT1-/- BL-CFC possessed limited hematopoietic potential, whereas endothelial potential was essentially unaltered. The ability of SIRT1-/- ES cells to form primitive erythroid progenitors was not only delayed but greatly decreased. Moreover, after differentiation of SIRT1-/- mES cells, there were also significant decreases in granulocyte-macrophage (CFU-GM) and multipotential (CFU-GEMM) progenitor cells. Differentiation delay/defects were associated with delayed capacity to switch off Oct4, Nanog and Fgf5, decreased β-H1 globin, β-major globin, and Scl gene expression and reduced activation of the Erk1/2 pathway upon SIRT1-/- ES cell commitment. Reintroduction of WT SIRT1 into SIRT1-/- cells partially rescued the primitive erythroid progenitor formation of SIRT1-/- cells and the expression of hemoglobin genes, Hbb-bh1 and Hbb-b1, suggesting that the defect of hematopoietic commitment is due to deletion of SIRT1, and not to genetic drifting of SIRT1-/- cells. To confirm the requirement for SIRT1 for normal development of hematopoietic progenitor cells, we assessed embryonic and adult hematopoiesis in SIRT1+/+, SIRT1+/- and SIRT1-/- mice. Yolk sacs from SIRT1 mutant embryos generated fewer primitive erythroid precursors compared to wild-type (WT) and heterozygous mice. Moreover, knockout of SIRT1 decreased primary bone marrow hematopoietic progenitor cells (HPCs) in 5 week and 12 month old mice, which was especially notable at lower (5%) O2 tension. In addition these progenitors survived less well in vitro under conditions of delayed growth factor addition. Taken together, these results demonstrate that SIRT1 plays a role in ES cell hematopoietic differentiation and mouse hematopoiesis.
196

In Vivo Imaging of Engraftment and Enrichment of Lentiviral Transduced Hematopoietic Bone Marrow Cells Under MGMT-P140K Mediated Selection

Lin, Yuan January 2011 (has links)
No description available.
197

CD38 promotes hematopoietic stem cell dormancy

Ibneeva, Liliia 04 June 2024 (has links)
Hematopoietic stem cells (HSCs) are rare cells that continuously regenerate the entire hematopoietic system by producing billions of blood cells. Dormant HSCs (dHSCs) represent a distinct subpopulation of HSCs characterized by deep quiescence and very low overall biosynthetic activity. Despite this, dHSCs have the highest reconstitution and self-renewal potential and reside at the apex of the hematopoietic hierarchy. While dHSCs do not significantly contribute to daily blood cell production under steady-state conditions, they can be reversibly activated in response to inflammatory signals or blood loss. Thus, dHSCs serve as a reserve pool of HSCs during the entire life. Insufficient dormancy can subject dHSCs to replication stress and promote the accumulation of somatic mutations, increasing the risk of their exhaustion or malignant transformation. Conversely, excessive dormancy can limit normal blood cell production, potentially resulting in bone marrow failure. Therefore, further investigations exploring the mechanisms controlling HSC dormancy are required, as this knowledge is essential for developing novel therapeutic interventions for supporting blood production following chemotherapy or HSC transplantation. Progress in dHSC research has been impeded by technical difficulties associated with isolating these cells. Current methods include either label retention assay, which is very time-consuming, or the use specialized reporter mouse strains that are not readily available. Herein, we utilized single-cell RNA sequencing of HSCs to identify potential surface markers which would facilitate the direct isolation of dHSCs using fluorescence-activated cell sorting (FACS). We selected CD38 as a candidate gene and confirmed that its high expression levels in LT-HSCs, the most functional HSCs identified by the latest surface phenotype, correspond to the dormant subpopulation. Namely, we employed four techniques (staining for cell cycle, label incorporation assay, label retention assay, and single-cell division tracking assay) and demonstrated that CD38+ HSCs are the most quiescent among LT-HSCs. Additionally, through serial competitive transplantation into lethally irradiated mice, we compared CD38+ and CD38- LT-HSCs and discovered that CD38+ LT-HSCs have superior repopulation and self-renewal capacities compared to CD38- LT-HSCs. Thus, we concluded that CD38 is a marker for dHSCs in mice. Besides, we applied the models of hematopoietic stress – acute thrombocytopenia, injection of viral mimetic polyinosinic:polycytidylic acid, and the chemotherapeutic agent 5-fluorouracil, and showed that high expression levels of CD38 on LT-HSCs define dHSCs both in homeostasis and under stress conditions. Notably, we showed that CD38 is not only a marker but also has a functional role in mediating HSC dormancy. Using CD38 knock-out mice, small molecule inhibitor for CD38 enzymatic activity, in vitro assays, bulk RNA sequencing, and confocal microscopy, we discovered a previously unknown signaling axis that promotes HSC dormancy via CD38 enzymatic activity. We demonstrated that second messenger cADPR, synthesized by CD38 through the conversion of nicotinamide adenine dinucleotide - NAD+, elevates free cytoplasmic Ca2+ in dHSCs. This elevation induces the expression of the transcription factor c-Fos. Subsequently, c-Fos forms complexes with the Smad2/3, ultimately promoting dHSC quiescence in p57Kip2-dependent manner. Thus, we revealed that CD38/cADPR/Ca2+/c-Fos-Smad2/3/p57kip2 axis supports dHSCs. Human HSCs (hHSC) are defined as CD38lo/- ; however, CD38 is expressed by various immune cell types present in human bone marrow, such as B-lymphocytes, T-lymphocytes, NK-cells, neutrophils and monocytes. Our co-culture experiments of hHSCs with CD38+ cells and human bone marrow imaging suggest that CD38 promotes hHSC quiescence, however indirectly, in a paracrine manner. Besides, several hematological malignancies (e.g. multiple myeloma, chronic lymphocytic leukemia, acute myeloid leukemia) express CD38 at a high level. We hypothesize that tumor microenvironment enriched in the products of CD38 ecto-enzymatic activity may suppress the cell cycle of healthy hHSCs leading to cancer-related pancytopenia. Therefore, inhibiting CD38-mediated cADPR production might support healthy hematopoiesis in patients with hematologic malignancies. In summary, while CD38/Ca2+ and c-Fos have individually been implicated in proliferation in other cell types, our study for the first time reveals their role in promoting HSC dormancy in collaboration with well-known mediators of HSC quiescence Smad2/3 and p57Kip2. Therefore, we gathered the pieces of the puzzle together and discovered the novel CD38 enzymatic activity-driven signaling pathway controlling HSC dormancy. Manipulation of this axis can potentially stimulate an efficient dHSC response to hematopoietic stress. / Hämatopoetische Stammzellen (HSZ) sind seltene Zellen, die das gesamte blutbildende System kontinuierlich regenerieren, indem sie Milliarden von Blutzellen produzieren. Ruhende HSZ (rHSZ) stellen eine besondere Subpopulation von HSZ dar, die sich durch tiefe Ruhephasen und eine sehr geringe Biosyntheseaktivität auszeichnet. Trotzdem haben rHSZ das höchste Rekonstitutions- und Selbsterneuerungspotenzial und stehen an der Spitze der hämatopoetischen Hierarchie. Während rHSZs unter Normalbedingungen nicht wesentlich zur täglichen Blutzellproduktion beitragen, können sie als Reaktion auf Entzündungssignale oder Blutverlust reversibel aktiviert werden. Somit dienen rHSZ während des gesamten Lebens als HSZ-Reservoir. Eine gestörte Ruhe der rHSZs kann die Zellen einem Replikationsstress aussetzen und die Anhäufung somatischer Mutationen fördern, was das Risiko für Zellerschöpfung oder maligne Transformation erhöht. Umgekehrt kann eine übermäßige Ruhephase die normale Blutzellproduktion einschränken und möglicherweise zu Knochenmarksversagen führen. Daher ist eine weitere Erforschung der Mechanismen erforderlich, die die HSZ-Ruhephase steuern, da dieses Wissen für die Entwicklung neuartiger therapeutischer Maßnahmen zur Unterstützung der Blutproduktion nach einer Chemotherapie oder HSZ-Transplantation unerlässlich ist. Der Fortschritt in der rHSZ-Forschung wurde durch technische Schwierigkeiten bei der Isolierung dieser Zellen behindert. Zu den derzeitigen Methoden gehören entweder der sehr zeitaufwändige Label-Retentionstest oder die Verwendung spezieller Reportermausstämme, die nicht ohne Weiteres verfügbar sind. In dieser Arbeit haben wir die Einzelzell-RNA-Sequenzierung von HSZs genutzt, um potenzielle Oberflächenmarker zu identifizieren, die die direkte Isolierung von rHSZs mittels fluoreszenzaktivierter Zellsortierung (FACS) erleichtern würden. Wir wählten CD38 als Kandidatengen aus und überprüften, dass dessen hohe Expression auf den funktionellsten HSZ (LT-HSZ), welche mit dem neuesten Oberflächenphänotyp isoliert wurden, die ruhenden Subpopulation identifizieren kann. Wir haben vier Techniken angewandt (Färbung für den Zellzyklus, Label-Inkorporationstest, Label-Retentionstest und Einzelzellteilungstest) und gezeigt, dass CD38+ HSZ die am tiefsten ruhenden LT-HSZs sind. Darüber hinaus haben wir durch serielle konkurrierende Transplantation in letal bestrahlte Mäuse CD38+ und CD38- LT-HSZs verglichen und festgestellt, dass CD38+ LT-HSZs im Vergleich zu CD38- LT-HSZs eine höhere Wiederbesiedlungs- und Selbsterneuerungskapazität haben. Daraus schlossen wir, dass CD38 ein Marker für rHSZs in Mäusen ist. Außerdem wendeten wir Modelle für hämatopoetischen Stress an - akute Thrombozytopenie, Injektion des viralen Mimetikums Polyinosin:Polycytidylsäure und des Chemotherapeutikums 5-Fluorouracil - und zeigten, dass eine hohe Expressionsrate von CD38 auf LT-HSZs rHSZs sowohl in Homöostase als auch unter Stressbedingungen definiert. Besonders bemerkenswert ist, dass wir zeigen konnten, dass CD38 nicht nur ein Marker ist, sondern auch eine funktionelle Rolle bei der Vermittlung der HSZ-Ruhe spielt. Mithilfe von CD38-Knock-out-Mäusen, kleinen Molekül-Inhibitoren für die CD38-Enzymaktivität, In-vitro-Tests, Massen-RNA-Sequenzierung und konfokaler Mikroskopie entdeckten wir eine bisher unbekannte Signalachse, die die HSZ-Ruhe über die enzymatische Aktivität von CD38 fördert. Wir konnten nachweisen, dass der sekundäre Botenstoff cADPR, der von CD38 durch die Umwandlung von Nikotinamid-Adenin-Dinukleotid (NAD+) synthetisiert wird, das freie zytoplasmatische Ca2+ in rHSZs erhöht. Diese Erhöhung induziert die Expression des Transkriptionsfaktors c-Fos. Anschließend bildet c-Fos Komplexe mit Smad2/3 und fördert schließlich die Ruhe der rHSZ in Abhängigkeit von p57Kip2. Wir konnten also zeigen, dass die CD38/cADPR/Ca2+/c-Fos-Smad2/3/p57kip2-Achse rHSZs unterstützt. Humane HSZ (hHSZ) werden als CD38lo/- definiert; CD38 wird jedoch von verschiedenen Immunzellarten im menschlichen Knochenmark exprimiert, z. B. von B-Lymphozyten, T-Lymphozyten, NK-Zellen, Neutrophilen und Monozyten. Unsere Co-Kulturexperimente von hHSZs mit CD38+-Zellen und die Bildgebung des menschlichen Knochenmarks deuten darauf hin, dass CD38 die Ruhe von hHSZs fördert, wenn auch indirekt auf parakrine Weise. Außerdem exprimieren mehrere hämatologische Malignome (z. B. multiples Myelom, chronische lymphatische Leukämie, akute myeloische Leukämie) CD38 in hohem Maße. Wir stellen die Hypothese auf, dass die Mikroumgebung des Tumors, die mit den Produkten der ektoenzymatischen Aktivität von CD38 angereichert ist, den Zellzyklus gesunder hHSZs unterdrücken kann, was zu krebsbedingter Panzytopenie führt. Daher könnte die Hemmung der CD38-vermittelten cADPR-Produktion die gesunde Hämatopoese bei Patienten mit hämatologischen Malignomen unterstützen. Zusammenfassend lässt sich sagen, dass CD38/Ca2+ und c-Fos zwar bereits einzeln für die Proliferation in anderen Zelltypen verantwortlich gemacht wurden, unsere Studie jedoch zum ersten Mal ihre Rolle bei der Förderung der HSZ-Ruhe in Zusammenarbeit mit den bekannten Mediatoren der HSZ-Ruhe Smad2/3 und p57Kip2 aufzeigt. Wir haben also die Teile des Puzzles zusammengefügt und den neuartigen, von der enzymatischen Aktivität von CD38 gesteuerten Signalweg entdeckt, der die HSZ-Ruhephase kontrolliert. Die Manipulation dieser Achse kann möglicherweise eine effiziente rHSZ-Reaktion auf hämatopoetischen Stress stimulieren.
198

Caractérisation du rôle et des mécanismes d’action des gènes Hoxa dans l’hématopoïèse adulte

Lebert-Ghali, Charles-Étienne 12 1900 (has links)
Chez les humains, un large pourcentage de leucémies myéloïdes et lymphoïdes exprime des gènes Homéobox (Hox) de façon aberrante, principalement ceux du groupe des gènes Hoxa. Cette dérégulation de l’expression des gènes Hox peut provenir directement des translocations impliquant des gènes Hox ou indirectement par d’autres protéines ayant un potentiel oncogénique. De plus, plusieurs études indiquent que les gènes Hox jouent un rôle essentiel dans l'initiation de diverses leucémies. Comprendre le fonctionnement des gènes Hox dans l'hématopoïèse normale est donc une condition préalable pour élucider leurs fonctions dans les leucémies, ce qui pourrait éventuellement conduire à l’élaboration de nouveaux traitements contre cette maladie. Plusieurs études ont tenté d’élucider les rôles exacts des gènes Hox dans l'hématopoïèse via l’utilisation de souris mutantes pour un seul gène Hox. Or, en raison du phénomène de redondance fonctionnelle chez cette famille de gènes, ces études ont été peu concluantes. Il a été précédemment démontré que dans une population de cellules enrichies en cellules souches hématopoïétiques (CSH), les gènes du cluster Hoxa sont plus exprimés que les gènes Hox des autres clusters. Aussi, il a été établi que les gènes du cluster Hoxb sont non essentiels à l’hématopoïèse définitive puisque les CSH mutantes pour les gènes Hoxb1-9 conservent leur potentiel de reconstitution à long terme. En nous basant sur ces données, nous avons émis l'hypothèse suivante : les gènes Hoxa sont essentiels pour l'hématopoïèse normale adulte. Pour tester notre hypothèse, nous avons choisi d’utiliser un modèle de souris comportant une délétion pour l’ensemble des gènes Hoxa. Dans le cadre de cette recherche, nous avons démontré que les CSH, les progéniteurs primitifs et les progéniteurs des cellules B sont particulièrement sensibles au niveau d'expression des gènes Hoxa. Plus particulièrement, une baisse de la survie et une différenciation prématurée semblent être à l’origine de la perte des CSH Hoxa-/- dans la moelle osseuse. L’analyse du profil transcriptionnel des CSH par séquençage de l'ARN a révélé que les gènes Hoxa sont capables de réguler un vaste réseau de gènes impliqués dans divers processus biologiques. En effet, les gènes Hoxa régulent l’expression de plusieurs gènes codant pour des récepteurs de cytokine. De plus, les gènes Hoxa influencent l’expression de gènes jouant une fonction dans l’architecture de la niche hématopoïétique. L’expression de plusieurs molécules d’adhésion est aussi modulée par les gènes Hoxa, ce qui peut affecter la relation des CSH avec la niche hématopoïétique. L’ensemble de ces résultats démontre que les gènes Hoxa sont d'importants régulateurs de l'hématopoïèse adulte puisqu’ils sont nécessaires au maintien des CSH et des progéniteurs grâce à leurs effets sur plusieurs processus biologiques comme l'apoptose, le cycle cellulaire et les interactions avec la niche. / In humans, a large percentage of myeloid and lymphoid leukemias exhibit aberrant Homeobox (Hox) genes expression, predominantly Hoxa genes. This aberrant expression is known to be caused by either translocations involving Hox genes or indirect activation of Hox genes. In addition, evidence now indicates a critical role for Hox genes in the initiation of leukemias. Clearly, understanding how Hox genes function in normal hematopoiesis is prerequisite to elucidate their involvement in leukemogenesis and this may eventually lead to new treatments for this disease. Attempts to determine the precise role(s) of Hox genes in normal hematopoiesis using single gene loss of function mutants have shown little success due to functional complementation by the remaining Hox genes. We previously showed that the Hoxa genes are much higher expressed in enriched hematopoietic stem cell (HSC) populations than the other members of the Hox gene family. Moreover, Hoxb cluster genes were found to be dispensable for HSCs long-term repopulation of irradiated mice. Thus, we hypothesize that Hoxa genes are critical for normal adult hematopoiesis. We have used a multi-gene knockout (KO for the entire Hoxa cluster) approach to thoroughly evaluate this issue. In this thesis, we showed that HSC, primitive progenitors and B cell progenitors are particularly sensitive to the levels of Hoxa gene expression. Furthermore, a lower survival and a premature differentiation account for the loss HSC Hoxa-/- in bone marrow. Differential expression profiling by RNASeq revealed that Hoxa genes are capable of regulating a broad array of genes involved in various biological processes. Indeed, Hoxa genes regulate the expression of several genes coding for cytokine receptors. Furthermore, Hoxa genes modulate the expression of genes implicated in the regulation and formation of the niche architecture. The expression of several adhesion molecules is also modulated by the Hoxa genes, which can affect the relationship of HSC with the hematopoietic niche. Through their action on several biological processes such as apoptosis, cell cycle and niche interactions, Hoxa genes are necessary for maintenance of HSC and progenitors. Taken together, these results demonstrate that Hoxa genes are important regulators of adult hematopoiesis.
199

Impact d’une mutation ponctuelle stratégique de la protéine HOXB4 sur son pouvoir de régulation, de prolifération et de différenciation des CSH et des progéniteurs murins

Beauchemin, Stéphanie 12 1900 (has links)
L’expansion des cellules souches hématopoïétiques ex vivo représente une option des plus intéressante afin d’améliorer les greffes de moelle osseuse. Le facteur de transcription HOXB4 semble être le candidat ayant le plus de potentiel jusqu’à présent. Cependant, la très courte demi-vie de la protéine représente un obstacle majeur dans l’élaboration de protocoles cliniques. Par contre, la substitution d’un acide aminé (3 mutations individuelles) dans la partie N-terminale de la protéine augmente de près de 3 fois la stabilité intracellulaire de HOXB4. Nous avons comparé l’activité biologique de ces mutants à celle de HOXB4 natif (« wt ») dans des essais in vitro et in vivo. Nous avons démontré que la surexpression de HOXB4 muté par infection des cellules souches hématopoïétiques n’affectait pas leur pouvoir de reconstitution hématopoïétique à long terme dans des souris transplantées. Par ailleurs, nous avons noté que dans les essais de reconstitution hématopoïétique en compétition et en non compétition, les cellules surexprimant les protéines mutées ont une expansion supérieure in vitro et reconstituent le sang et la rate avec une répartition de cellules lymphoïdes et myéloïdes plus près de souris non-transplantées comparativement aux cellules exprimant HOXB4 « wt ». De plus, les cellules surexprimant la protéine HOXB4 mutée apparaissent beaucoup plus rapidement et en plus grande proportion dans le sang comparativement aux cellules surexprimant la forme native. Une des protéines HOXB4 mutées (1426) ne permet pas l’expansion des progéniteurs myéloïdes immatures (CMP) contrairement à la protéine « wt ». Et finalement, par les études de modulation intracellulaire protéique, nous avons démontré que les comportements des protéines HOXB4 « wt » et mutées envers les cellules souches hématopoïétiques et progéniteurs n’étaient pas complètement dus à un effet de concentration protéique. / Ex vivo hematopoietic stem cell expansion represents a most appealing option to improve bone marrow transplantation. Utilization of the unique hematopoietic stem cell (HSC) expansion abilities of the transcription factor HOXB4 for clinical applications is hampered by its short intracellular half-life. To overcome this difficulty, 3 different single amino-acid substitution mutants of HOXB4 with 3-4 fold increased half-life were generated and their biologic activity compared to that of wild type (wt) HOXB4 using in vitro and in vivo assays. We have shown that overexpression of mutated HOXB4 in HSC using an infection strategy did not impair their long term hematopoietic reconstitution potential in transplanted mice. We have found that cells overexpressing mutant HOXB4 had greater expansion in vitro in competitive and non-competitive designs than wt HOXB4. Moreover, in vivo peripheral blood and spleen repopulation had lymphoid and myeloid contributions closer to untransplanted animals with mutant than wt HOXB4. In addition, cells overexpressing mutant HOXB4 protein were detected much more rapidly and in greater proportion in peripheral blood than cells overexpressing the wt form. One of the mutated HOXB4 proteins (1426) did not promote the expansion of common myeloid progenitors in comparison to wt HOXB4. Finally, using intracellular protein modulation studies, we have shown that the effects of mutated and wt HOXB4 proteins in hematopoietic stem and progenitor cells were not completely due to a HOXB4 concentration effect.
200

Effet de la surexpression du gène Hoxb4 sur la prolifération homéostatique des cellules T mémoires

Frison, Héloïse 08 1900 (has links)
Les cellules T mémoires (Tm) protègent l’organisme contre les réinfections de pathogènes qu’il a déjà combattu. Les Tm possèdent plusieurs propriétés en commun avec les cellules souches hématopoïétiques (CSH), notamment la capacité de se différencier, de s’auto-renouveler et de maintenir une population relativement constante au sein de l’organisme via des mécanismes homéostatiques. Il a été démontré que Hoxb4, un membre de la famille des facteurs de transcription Hox, était capable d’induire l’expansion des CSH in vivo et in vitro de façon rapide. Au vu de ces parallèles, nous avons posé l’hypothèse que la surexpression de Hoxb4 pourrait induire l’expansion de populations de Tm. Nous avons analysé les populations de Tm et lymphocytes T naïfs (Tn) dans les organes lymphoïdes de souris transgéniques surexprimant Hoxb4 et les avons comparées à des souris de type sauvage (wt). Alors que la fréquence des cellules T matures Hoxb4 diminuait avec l’âge, leur phénotype ainsi que leur viabilité demeuraient inchangés. Ensuite, nous avons procédé à des transplantations en compétition de Tm (CD4+CD44hi) Hoxb4 et wt chez des hôtes dépourvus de lymphocytes T (CD3-/-) dans le but d’évaluer leur contribution à la reconstitution du compartiment T après 2 mois. Au final, les Tm wt avait contribué un peu plus que les Tm Hoxb4 à la reconstitution (~60%). Des analyses fonctionnelles et phénotypiques ont montré que les Tm Hoxb4 possédaient une fonctionnalité normale, mais se distinguaient des Tm wt par la présence d’une faible population qui présentait un phénotype « mémoire central » (Tcm), conférant habituellement une longévité accrue. Les cellules des ganglions lymphatiques totaux des hôtes furent transplantées de façon sérielle chez trois générations de nouveaux hôtes. Le phénotype Tcm observés chez les Tm Hoxb4 était récapitulé chez les hôtes secondaires uniquement. Les ratios sont demeurés en faveur des Tm wt lors des deux transplantations suivantes, mais les Tm Hoxb4 ont commencé à montrer un avantage compétitif chez certains hôtes quaternaires. Une transplantation en compétition à court terme de Tm Hoxb4 et wt marqués avec un marqueur cytoplasmique ont démontré la présence chez les Tm Hoxb4 seulement d’une faible population CD62Lhi proliférant lentement. Ainsi, l’expansion préférentielle de Tcm CD4 par le biais d’une sélection ou d’une différenciation induite par la surexpression de Hoxb4 pourrait potentiellement leur permettre de maintenir un état de quiescence leur permettant de persister plus longtemps suite à des transplantations sérielles. / Memory T cells (Tm) protect the organism against reinfection from pathogens they’ve already encountered. Tm share characteristics with hematopoietic stem cells (HSC), such as the capacity to differentiate, self-renew and maintain a relatively constant population via homeostatic mechanisms. Hoxb4, a member of the Hox genes family of transcription factors, has been shown to expand HSCs rapidly in vivo and in vitro. Thus, drawing from these parallels we hypothesise that Hoxb4 overexpression could lead to expansion of Tm populations. Tm and naïve T cell (Tn) populations were analysed in the lymphoid organs of young and aged transgenic mice overexpressing Hoxb4 in comparison with wild type (wt) mice. While the frequencies of mature Hoxb4 T cells in lymphoid organs seemed to decline with age, the phenotype or the cell viability remained unaffected. Next, CD4+CD44hi Hoxb4 Tm were transferred into T cell deficient (CD3-/-) hosts in competition with wt CD4+CD44hi Tm and evaluated for their contribution to T cell reconstitution after 2 months. Engraftment of wt Tm in secondary lymphoid organs was slightly higher than Hoxb4 Tm (~60%). Functional assays and phenotypic analysis showed that Hoxb4 Tm exhibited normal functionality, but in contrast to wt Tm, a fraction of Hoxb4 Tm exhibited a more central memory (Tcm) phenotype, indicative of a longer lifespan. Total lymph nodes from hosts were serially re-transplanted for three generations. The Tcm phenotype of the Hoxb4 Tm present in the primary hosts was recapitulated in the secondary but not in the tertiary hosts. The ratios remained in favor of the wt Tm after two subsequent expansion rounds, but Hoxb4 Tm showed a competitive advantage over wt Tm in some quaternary hosts. Cell tracking of a short term transplantation of Hoxb4 and wt Tm in competition exposed a small population of CD62Lhi cells displaying slow proliferation in the Hoxb4 Tm only. Thus preferential CD4+ Tcm expansion by selection or differentiation could potentially allow Hoxb4 Tm to persist longer following serial transplantations due to a more quiescent state.

Page generated in 0.1394 seconds