• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PD-1 Negatively Regulates Interleukin-12 Expression by Limiting Stat-1 Phosphorylation in Monocytes/Macrophages During Chronic Hepatitis C Virus Infection

Ma, Cheng J., Ni, Lei, Zhang, Ying, Zhang, C. L., Wu, Xiao Y., Atia, Antwan N., Thayer, Penny, Moorman, Jonathan P., Yao, Zhi Q. 01 March 2011 (has links)
Hepatitis C virus (HCV) is remarkably efficient at evading host immunity to establish chronic infection. During chronic HCV infection, interleukin-12 (IL-12) produced by monocytes/macrophages (M/Mφ) is significantly suppressed. Programmed death-1 (PD-1), an inhibitory receptor on immune cells, plays a pivotal role in suppressing T-cell responses during chronic viral infection. To determine whether PD-1 regulates IL-12 production by M/Mφ during chronic HCV infection, we examined the expressions of PD-1, its ligand PDL-1, and their relationship with IL-12 production in M/Mφ from HCV-infected, HCV-resolved, and healthy subjects by flow cytometry. Toll-like receptor (TLR) -mediated IL-12 production by M/Mφ was selectively suppressed, while PD-1/PDL-1 expressions were up-regulated, in HCV-infected subjects compared with HCV-resolved or healthy subjects. Up-regulation of PD-1 was inversely associated with the degree of IL-12 inhibition in HCV infection. Interestingly, the reduced response of M/Mφ from HCV-infected individuals to TLR ligands appeared not to be the result of a lack of the ability to sense pathogen, but to an impaired activation of intracellular janus kinase/signal transducer and activator of transfection (STAT) pathway as represented by inhibited STAT-1 phosphorylation in M/Mφ from HCV-infected individuals compared with HCV-negative subjects. Successful HCV treatment with pegylated interferon/ribavirin or blocking PD-1/PDL-1 engagement ex vivo led to reduced PD-1 expression and improved IL-12 production as well as STAT-1 activation in M/Mφ from HCV-infected individuals. These results suggest that the PD-1 inhibitory pathway may negatively regulate IL-12 expression by limiting STAT-1 phosphorylation in M/Mφ during chronic HCV infection. No claim to original US government works.
2

THE IMPACT OF DIRECT-ACTING ANTI-VIRAL THERAPY ON NAIVE CD4+ T CELL LYMPHOPENIA AND CELLULAR IMMUNE ACTIVATION IN HCV INFECTION AND HCV/HIV CO-INFECTION

Auma, Ann Winniefred Nangobi 30 August 2021 (has links)
No description available.
3

Modelling How Refractoriness to Interferon Compromises Interferon-Free Treatment of Hepatitis C Virus Infection

Venugopal, Vishnu January 2017 (has links) (PDF)
Hepatitis C virus (HCV) infection globally affects 130-150 million people. It causes both acute and chronic infections. Due to the severe side effects and low success rates of interferon based treatments, which formed the standard treatment for HCV, the treatment paradigm shifted to direct acting antivirals (DAAs). DAAs have revolutionized the treatment of hepatitis C virus infection. Clinical trials with combinations of DAAs have recorded >90% response with shorter treatment durations and fewer side effects than earlier treatments involving IFN. Outside the controlled setting of a clinical trial, however, response rates with DAA combinations are much lower (<70%). DAAs can fail if HCV accumulates mutations that confer drug resistance. Interestingly, the pre-existence of mutant frequency in the virus appears not to influence treatment outcome. A better predictor for DAA treatment outcome is yet to be unravelled. Surprisingly, individuals who respond poorly to IFN appear to be more likely to fail DAA treatment. IFN is a generic antiviral that improves immune responses and is expected not to have any bearing on DAA treatment outcomes. Why individuals with poor IFN sensitivity fail DAA treatment remains a mystery. In a recent study of the IFN signalling network, HCV has been shown to compromise IFN activity. It induces bistability in the network leading to distinct phenotypic responses of cells to IFN exposure. In particular, individuals who respond poorly to IFN tend to have a higher percentage of cells that are refractory to IFN; these cells allow viral persistence despite IFN exposure. We hypothesized here that in such individuals, greater ongoing replication would allow increased development of resistance and thus lead to the failure of DAAs. We constructed a model of viral dynamics that accounts for the distinct phenotypic responses of cells to IFN, viral replication and mutation, and the development of resistance to DAAs. Our model predicted that although the relative prevalence of pre- existing mutants is unaffected by IFN sensitivity, in agreement with observations, the growth of drug resistant mutants is accelerated in individuals with poor IFN sensitivity. Based on a distribution of IFN sensitivity across individuals, our model accurately described clinical observations of the response rates to different current treatment protocols. With this model, we predict that the common strategy of increasing the genetic barrier by adding more drugs to the combination was not necessary to avert the development of drug resistance. Instead, an optimised increase in DAA dosage alone or DAA+PR or PR dosage depending on the patient’s IFN sensitivity could help achieve success.
4

Mechanistic Insights into Translation and Replication of Hepatitis C Virus RNA : Exploring Direct-Acting Antivirals

Kumar, Anuj January 2014 (has links) (PDF)
Hepatitis C virus (HCV), a blood-borne pathogen, is a small enveloped RNA virus belonging to the Hepacivirus genus of the Flaviviridae family. HCV infection represents one of the major health concerns affecting approximately 170 million people globally. Patients with chronic HCV infection are at risk of developing hepatic fibrosis, cirrhosis and hepatocellular carcinoma. No protective anti-HCV vaccine is available yet. Until recently, standard therapy based on pegylated interferon plus ribavirin, was inadequate in treating all the patients as it results in a sustained virological response in only 40 to 50 percent of patients infected with the most common genotype (gt 1). Advances in understanding host-HCV interactions have helped developing newer anti-HCV agents such as telaprevir and boceprevir. However, treatment success is still limited due to different factors including genotype specificity, high cost, potential drug-drug interactions, substantial side effects etc. The positive-sense single-stranded RNA genome of HCV is approximately 9.6kb long which is flanked by highly structured and conserved 5’ and 3’ untranslated regions (UTRs) at both ends. Unlike cap-dependent translation of host cell mRNAs, HCV translation is mediated by an internal ribosomal entry site (IRES) present majorly within the 5’UTR. Several reports have demonstrated the interaction of different cellular proteins with HCV-5’UTR and/or 3’UTR, which include human La protein, polypyrimidine tract binding protein (PTB), poly (rC)-binding protein 2 (PCBP2) etc. These interactions of trans-acting factors with the UTRs may be important for HCV translation and/or replication. Earlier study from our laboratory revealed the importance of interaction of human La protein, by its central RNA recognition motif (RRM), with the HCV IRES around a tetranucleotide sequence GCAC near initiator AUG in influencing HCV translation. However, the role of this interaction, if any, in HCV RNA replication was not known. In the first part of the thesis, we characterized the interaction between human La protein and the GCAC to understand its role in HCV replication. We incorporated mutation, which altered the binding of La, in the GCAC motif in HCV monocistronic replicon and checked HCV RNA replication by reverse transcriptase polymerase chain reaction (RT-PCR). The mutation drastically inhibited HCV replication. Interestingly, overexpression of La could reverse the effect of this mutation and significantly enhanced HCV RNA levels. Using a bicistronic replicon, we observed that decrease in replication was independent of translation inhibition. Furthermore, mutation at the GCAC motif reduced the association between La and viral polymerase, NS5B as seen in co-immunoprecipitation assays. Moreover, this mutation affected translation to replication switch regulated by the interplay between HCV-NS3 protease and human La protein. Our analyses of point mutations, based on RT-PCR and luciferase assays, revealed distinct roles of each nucleotide of the GCAC motif in HCV replication and translation. Finally, 5’-3’ crosslink assays revealed that specific interaction of the GCAC motif with human La protein is important for linking 5’ and 3’ends of HCV genome. Results clearly demonstrate the mechanism of regulation of HCV replication by interaction of cis-acting element GCAC within the HCV IRES with human La protein. HCV is highly species-specific. Under natural conditions, HCV infects only humans and chimpanzees. This restricted host-tropism has prevented the development of a small animal model to study HCV infection in vivo. Although several human-specific entry factors have been identified to be responsible for this species selectivity, full multiplication of the HCV in animals (other than humans and chimpanzees) is still not possible. In the second part of the thesis, we showed that a post-entry host factor –‘La protein’ may also contribute in determining HCV host tropism. We aligned La protein sequences from different species and interestingly we found that HCV RNA interacting beta-turn sequence (KYKETDL) in central RRM (residues 112-184) is conserved only in human and chimpanzee. Earlier, it was shown from our laboratory that a heptameric peptide comprising of this sequence (derived from human La) could inhibit HCV translation by competing with La interaction with the IRES element. However, in the current study, another peptide corresponding to the mouse La sequence (KYKDTNL) was unable to inhibit HCV RNA translation. Similarly, wild-type mouse La (mLa) failed to stimulate HCV IRES function, but addition of chimeric mouse La protein bearing human beta-turn sequence (mLahN7) significantly increased HCV IRES mediated translation in vitro. Also, exogenous supplementation of mLahN7 enhanced HCV translation in cell culture system. Moreover, quantitative as well as tagged RT-PCR analyses showed an enhanced HCV replication upon overexpression of mLahN7. The findings obtained in this part raise a possibility of creating HCV mouse model using human specific cellular entry factors and a humanized form of La protein. Hepatitis C has emerged as a major challenge to the medical community. Developing more potent and safe anti-HCV regimens is need of the hour. As described above, a linear hepatapeptide (KYKETDL) was synthesized and shown to reduce HCV translation. However, this linear peptide was stable only for a shorter time scale. Therefore, in the third part of the thesis, effect of a more stable cyclic form of this peptide has been described. NMR spectroscopy suggested that the beta turn conformation is preserved in cyclic peptide as well. Also, using in vitro bicistronic reporter assay, we demonstrated that cyclic peptide inhibits HCV translation in a dose dependent manner. In fact, due to its higher stability, cyclic peptide reduced HCV translation and replication more efficiently than the corresponding linear peptide at longer post-treatment time point. Additionally, we observed that cyclic peptide is non-toxic in cell culture system. Our results suggest that cyclic peptide might emerge as a promising lead compound against hepatitis C. Due to availability of only partially effective liver protective drugs in modem medicine, complementary and alternative medicine approach, based on plant derived compounds, is also being utilised against HCV. Plant derived compounds have advantages of having high chemical diversity, drug-likeliness properties and ability of being metabolized by the body with little or no toxicity than synthetic ones. Different studies have shown that phytochemicals may exert anti-HCV activities by acting as direct-acting antivirals and play a potential therapeutic role in treating HCV infection. Also, from our laboratory, it was shown that methanolic extract of Phyllanthus amarus (P. amarus) plant inhibited HCV replication. The fourth part of the thesis describes the study on the anti-HCV properties of several bioactive components from P. amarus extract. Using a fluorimetric assay, we demonstrated that two principal components of this extract, phyllanthin and corilagin reduced the HCV NS3 protease activity significantly in vitro. We also observed a sharp reduction in HCV negative sense RNA levels in cell culture system. Structural knowledge-based molecular docking studies showed interactions of phyllanthin and corilagin with the amino acid residues of the catalytic triad of NS3 protease. Further, these compounds were found to be non-toxic in cell culture. Also, phyllanthin and corilagin displayed antioxidant properties by blocking HCV induced oxidative stress generated by reactive oxygen species suggesting their hepatoprotective nature. More importantly, our in vivo toxicity analyses and pharmacokinetics studies proved their safety, tolerability, metabolic stability, and systemic oral bioavailability and support their potential as novel anti-HCV therapeutic candidates. Altogether, the study deciphers mechanistic details of translation and replication of HCV RNA and demonstrates novel antiviral agents targeting these important viral processes.
5

Modeling The Population Dynamics Of Erythrocytes To Identify Optimal Drug Dosages For The Treatment Of Hepatitis C Virus Infection

Krishnan, Sheeja M 07 1900 (has links) (PDF)
The current treatment for hepatitis C virus (HCV) infection – combination therapy with pegylated interferon and ribavirin – elicits sustained responses in only ~50% of the patients treated. Greater cumulative exposure to ribavirin increases response to interferon-ribavirin combination therapy. A key limitation, however, is the toxic sideeffect of ribavirin, hemolytic anemia, which often necessitates a reduction of ribavirin dosage and compromises treatment response. Maximizing treatment response thus requires striking a balance between the antiviral and hemolytic activities of ribavirin. Current models of viral kinetics describe the enhancement of treatment response due to ribavirin. Ribavirin-induced anemia, however, remains poorly understood and precludes rational optimization of combination therapy. Here, we develop a new mathematical model of the population dynamics of erythrocytes that quantitatively describes ribavirin-induced anemia in HCV patients. Based on the assumption that ribavirin accumulation decreases erythrocyte lifespan in a dose-dependent manner, model predictions capture several independent experimental observations of the accumulation of ribavirin in erythrocytes and the resulting decline of hemoglobin in HCV patients undergoing combination therapy, estimate the reduced erythrocyte lifespan in patients and describe inter-patient variations in the severity of ribavirin-induced anemia. Further, model predictions estimate the threshold ribavirin exposure beyond which anemia becomes intolerable and suggest guidelines for the usage of growth hormones. A small fraction of the population (~30%) with polymorphisms in the ITPA gene shows protection from ribavirin-induced anemia. The optimum dosage of ribavirin that can be tolerated is then dependent on the ITPA polymorphisms. Coupled with a previous population pharmacokinetic study, our model yields a facile formula for estimating the optimum dosage given a patient’s weight, creatinine clearance, pretreatment hemoglobin levels, and ITPA polymorphism. The reduced lifespan we predict is in agreement with independent measurements from breath tests as well as estimates derived from in vitro studies of ATP depletion. The latter estimates also agree with the extent of ATP depletion due to ribavirin that we predict from a detailed analysis of the nucleoside metabolism in erythrocytes. Our model thus facilitates in conjunction with models of viral kinetics the rational identification of treatment protocols. Our formula for optimum dose presents an avenue for personalizing ribavirin dosage. By keeping anemia tolerable, the predicted optimal dosage may improve adherence, reduce the need for drug monitoring, and increase response rates.
6

Characterisation of Monoclonal Antibodies and Small Molecule Inhibitors as Hepatitis C Virus Entry Inhibitors

Bose, Mihika January 2016 (has links) (PDF)
Hepatitis C virus (HCV) represents a global health threat. HCV is a blood-borne positive-strand RNA virus belonging to the Flaviviridae family that infects ~160 million people worldwide. About 70% of infected individuals fail to clear the virus and subsequently develop chronic hepatitis, frequently leading to liver cirrhosis and in some cases hepatocellular carcinoma. Therapeutic options for HCV infection are still limited and a protective vaccine is not yet available. Currently available therapies include administration of pegylated alpha interferon in combination with ribavirin. The recently approved protease inhibitors Boceprevir and Telaprevir are also included in the treatment regimen. However, limitations to the treatment with direct-acting antivirals (DAAs) are associated with severe side effects and low sustained virological response (SVR) rates that vary depending on the virus and host genotype. The replication step of the viral life cycle is mostly targeted by majority of DAAs. Recent findings have suggested that a combination of entry inhibitors together with DAAs exhibit a synergistic effect in the treatment of HCV. Therefore, identification of efficient HCV entry inhibitors is of high priority In vitro studies have shown that HCV attachment and subsequent entry into the host cells is mediated by E1 and E2 viral envelope proteins. HCV entry requires interaction with a number of receptors which include CD81, scavenger receptor B1 (SR-B1) and the tight junction proteins, claudin 1 (CLDN1) and occludin (OCLN). Since the E2 glycoprotein is reported to interact directly with cellular receptors, it is an attractive target for neutralisation. The present study focuses on the establishment and characterisation of entry inhibitors as antivirals for HCV. The thesis is presented in three chapters: Chapter 1- ‘Introduction’, provides a brief overview on HCV genotypes, genome organisation, life cycle including details on the entry process and therapies used for the treatment of HCV. Chapter 2 describes the generation of monoclonal antibodies (mAbs) against HCV envelope proteins as potent anti-viral agents for the prevention of HCV infection. Data on the identification and characterization of the neutralizing epitopes of HCV envelope proteins have been presented. Chapter 3 includes isolation of entry inhibitors of HCV from natural sources and identification and characterization of the active components exhibiting antiviral property. A number of studies have reported the role of neutralizing antibodies in the course of HCV infection and emerging data suggest protective effect of antibodies against HCV infection. Most of the ongoing studies are based on HCV genotype 1a which is prevalent globally. However in India, the prevalent genotype is 3a. Therefore, we established a panel of mAbs against HCV-LPs comprising of core-E1-E2 derived from genotype 3a as described in chapter 2. HCV-LP based system has been used in this study since it mimics the biophysical conformation, morphology and antigenic properties of the native virion and represents a model system for studies on viral binding and entry. MAbs were characterised and analyzed for their ability to prevent viral binding and entry into host cells. Three mAbs namely E3D8, H6D3 and A10F2 were identified to recognize the E2 viral glycoprotein which significantly inhibited HCV-LP binding to Huh7 cells in vitro. The neutralizing epitopes corresponding to the mAbs were identified using overlapping truncated fragments and synthetic peptides of the E2 protein. Our experiments suggest that the epitopes recognised by the inhibitory mAbs are unique and different from those reported till now. The synergistic effect of a combination of mAbs on virus neutralization has shown promising results for treatment of viral infections. Since in the present study the epitopes recognised by the mAbs are non-overlapping, we went ahead to determine whether a combination of these mAbs would enhance the ability to block HCV-LP binding. Indeed, flow cytometry and fluorescence microscopy studies revealed that a combination of the antibodies efficiently blocked the binding of HCV-LP to human hepatoma cells. More importantly and of relevance is the observation that the mAbs in combination inhibited viral infection (JFH1 strain) and replication in permissive human hepatocytes as determined by real time RT-PCR. Phytochemicals present in plants have been considered as conducive for prevention of several viral infections and are found to be promising antiviral agents. Natural products which are biologically active disclose drug-like properties since they are small molecules and can be easily metabolised and absorbed by the body. In our study as described in chapter 3, we evaluated extracts from Indian medicinal plants and fruits which are known to have hepato-protective effect, for natural potent attachment and entry inhibitors for HCV. Flow cytometric analysis suggested that the root extract of the herb Boerhavia diffusa and fruit extract of Prunus domestica exhibited high antiviral activity by inhibiting the binding of Hepatitis C virus like particles (HCV-LPs) to the human hepatoma cells. We went on to isolate, identify and confirm the active principles to be Boeravinone H, a dehydrorotenoid, (from Boerhavia diffusa) and Rutin, a flavonoid, (from Prunus domestica) by LC-ESI-MS, NMR, UV and IR spectral analysis. Our study revealed that the compounds block the attachment as well as entry step probably by targeting the viral particle. We also assessed the efficiency of these small molecules (Boeravinone H and Rutin) to inhibit HCV negative strand synthesis post entry by real time RT-PCR. Results suggest significant inhibition of viral entry and infection in the HCV cell culture (ex vivo). To our knowledge it is the first report on Boeravinone H and Rutin as entry inhibitor for HCV. In conclusion, our findings support the potential of employing a cocktail of neutralizing mAbs and antiviral agents from natural source in the management of HCV infection.
7

Study of cell host factors involved in Hepatitis C virus tropism / Etude des facteurs cellulaires de l'hôte impliqués dans le tropisme du virus de l'hépatite C

Da Costa, Daniel 18 September 2012 (has links)
Le virus de l’hépatite C (HCV) est un problème majeur de santé publique. Le développement de nouveaux traitements pour lutter contre le HCV a été ralenti par l’absence de modèles d’études in vitro et in vivo convenables. Le but de mon travail de thèse a été, dans un premier temps, de caractériser les facteurs déterminant le tropisme hépatique du HCV. En exprimant des facteurs clés dans une lignée cellulaire humaine non-hépatocytaire, nous avons reconstitué in fine l’ensemble du cycle viral dans ces cellules. L’entrée du virus dans la cellule hôte fait intervenir différents récepteurs d’entrée dont CD81, occludin (OCLN), claudin-1 (CLDN1) et scavenger receptor class B type I (SR-BI). L’expression de ces quatre récepteurs sur cette lignée la rend hautement permissive à l’entrée du virus, mais ne permet pas de rétablir la réplication du virus. L’expression du micro-ARN 122, un micro-RNA important pour l’infection du HCV, dans les cellules exprimant les quatre récepteurs, restaure une forte réplication de l’ARN viral mais ne permet pas de détecter une production de particules infectieuses. L’expression de l’apolipoprotein E (apoE), jouant un rôle primordial dans l’assemblage et la sécrétion, rétablis cette dernière étape du cycle viral du HCV dans la lignée cellulaire humaine non-hépatocytaire. Dans un second temps, j’ai utilisé la stratégie, précédemment établie, pour étudier la spécificité d’espèce de l’infection du HCV dans plusieurs lignées hépatocytaires murines. Nous avons pu rendre ces cellules permissives à l’entrée du HCV et pu détecter une très faible réplication. L’ensemble de mes travaux apportent de nouvelles informations sur la compréhension des facteurs clés nécessaire au cycle viral du HCV dans des cellules murines et humaines. / Hepatitis C virus (HCV) is a global health burden. The development of new therapeutics to treat HCV infection has been hampered by the lack of convenient in vitro and in vivo model systems. The goal of my PhD work was, in a first time, to characterize the factors determining the hepatotropism of HCV. By expressing key factors within a non-hepatic cell line, we reconstituted in fine the full HCV life cycle in those cells. Virus entry into the host cell requires different entry factors which are CD81, occludin (OCLN), claudin-1 (CLDN1) and the scavenger receptor class B type I (SR-BI). The expression of these four factors in this cell line renders it highly permissive to viral entry, but does not allow restoring replication of the virus. The expression of miR-122, a micro-RNA important for HCV infection, into the cell lines expressing the four HCV entry factors restore a strong replication of the HCV RNA but does not allow detecting infectious viral particle production. Further expression of the apolipoprotein E (apoE), which plays a critical role in the assembly and release process, restore the last step of the HCV life cycle in a non-hepatic cell line. In a second part of my PhD, I have used the previously developed strategy to study the species specificity of HCV infection using different mouse hepatoma cell lines. We have been able to render these cell lines permissive to HCV entry and have been able to detect a slight replication. Altogether, my results bring new information on the understanding of key factors important for HCV life cycle in mouse and human cells.
8

Host-Pathogen Interactions in Hepatitis C Virus Infection : Deciphering the Role of Host Proteins and MicroRNAs

Shwetha, S January 2015 (has links) (PDF)
Host-pathogen interactions in Hepatitis C Virus infection: Deciphering the role of host proteins and microRNAs Hepatitis C virus (HCV) is a positive sense single stranded RNA virus belonging to the Hepacivirus genus of the Flaviviridae family. HCV genome consists of a single open reading frame flanked by highly structured 5‟ and 3‟ untranslated regions (UTRs) at both ends. Unlike cellular mRNAs, HCV RNA translation is independent of the cap structure and is mediated by an internal ribosomal entry site (IRES) present in the 5‟UTR. HCV replication begins with the synthesis of a complementary negative-strand RNA using the positive strand RNA genome as a template catalyzed by the NS5B RNA dependent RNA polymerase (RdRp). The de novo priming of HCV RNA synthesis by NS5B occurs at the very end of the 3‟UTR. The 3‟UTR is organized into highly structured regions namely the variable region, poly U/UC region and the 3‟X region. These regions contain cis-acting elements that determine the efficiency of viral replication. In addition, the interaction of trans-acting factors with the 3‟ UTR is also important for regulation of HCV replication. HCV 3‟UTR interacts with several cellular proteins such as the human La protein, polypyrimdine tract binding protein (PTB), poly (rC)-binding protein 2 (PCBP2) and Human antigen R (HuR). However, the molecular basis of regulation of viral replication by these proteins is not well understood. Many proteins that are hijacked by HCV as well as other cytoplasmic RNA viruses, such as La, PCBP2, HuR and PTB are RNA binding proteins (RBPs). They are involved in post transcriptional regulation of cellular gene expression. Thus the subversion of these proteins by the virus can affect their normal physiological functions. In addition to proteins, recent reports also describe the involvement of non-coding RNAs including microRNAs (miRNA) and long non coding RNAs (lncRNA) in HCV infection. miRNAs can either directly bind to the HCV genome and regulate its life cycle or indirectly modulate the expression of host proteins required by the virus. miRNAs that are differentially regulated in virus infected tissues or body fluids of infected patients can also serve as biomarkers for diagnosis of various stages of the disease. Hence, it was planned to study the role of host proteins and miRNAs in the HCV life cycle and pathogenesis to have novel insights into the biology of HCV infection. Riboproteomic studies have identified several host proteins that directly interact with the 5‟ and/or 3‟UTRs of the HCV RNA. One of the RNA binding proteins that predominantly interact with the 3‟UTR of HCV RNA was found to be HuR. In the present study, we have extensively characterized the interaction between HuR and HCV 3‟UTR and studied its functional implications in HCV life cycle along with other host factors. Characterizing the HCV 3’UTR–HuR interaction and its role in HCV replication HuR is a ubiquitously expressed member of the Hu family which shuttles between the nucleus and cytoplasm in response to stress. Whole genome siRNA knockdown and other studies have suggested that HuR is essential for HCV replication. However, the molecular mechanism of its involvement in this process was not clear. We observed that siRNA mediated knockdown of HuR reduces the HCV RNA and protein levels. Immunofluorescence studies indicated that HuR relocalizes from the nucleus to the cytoplasm in HCV infected cells. Through confocal microscopy and GST pulldown assays, we have demonstrated that HuR co localizes with the viral polymerase, NS5B and directly interacts with the NS5B protein. Membrane flotation assays showed that HuR is present in the detergent resistant membrane fractions which are the active sites of HCV replication. In addition to the interaction of HuR with the viral protein NS5B, we also characterized its interaction with the viral RNA. Direct UV cross linking assays and UV cross linking immunoprecipitation assays were performed to demonstrate the interaction of HuR with the HCV 3‟UTR. The RRM3, hinge region and RRM1 of HuR were found to be important for binding. Further, we observed that HuR competes with PTB for binding to the 3‟UTR when cytoplasmic S10 extracts or recombinant proteins were used in UV cross linking assays. In contrast, the addition of HuR facilitated the binding of La protein to the HCV 3‟UTR in the above assays. Competition UV cross linking assays indicated that both HuR and PTB bind to the poly U/UC region of the 3‟UTR while La binds to the variable region. HuR and La showed higher affinities for binding to the 3‟UTR as compared to PTB in filter binding assays. Since HuR and PTB interact with the same region on the 3‟UTR and HuR showed ~4 fold higher affinity for binding, it could displace PTB from the 3‟UTR. Next, we investigated the roles of HuR, PTB and La in HCV translation and replication in cell culture using three different assay systems, HCV sub genomic replicon, HCV bicistronic SGR-JFH1/Luc replicon as well as the infectious HCV full length RNA (JFH1). Results clearly indicated that HuR and La are positive modulators of HCV replication. Interestingly, PTB facilitated HCV IRES mediated translation but appeared to have a negative effect on HCV replication. The positive effectors, HuR and La showed significant co localization with one another in the cytoplasm in immunofluorescence studies. GST pulldown and coimmunoprecipitation experiments indicated protein-protein interactions between HuR and La but not between HuR and PTB. Through quantitative IP-RT assays, we demonstrated that the overexpression of HuR in HCV RNA transfected cells increases the association of La with the HCV RNA while HuR knockdown reduces the association of La with the HCV RNA. Previous studies in our laboratory have shown that La helps in HCV genome circularization. The addition of HuR significantly increased La mediated interactions between the 5‟UTR and the 3‟UTR of HCV RNA as monitored by 5‟-3‟ co precipitation assays, suggesting a possible mechanism by which cooperative binding of HuR and La could positively regulate HCV replication. Taken together, our results suggest a possible interplay between HuR, PTB and La in the regulation of HCV replication. Studying the role of HuR- associated cellular RNAs in HCV infection HuR belongs to the category of mRNA turnover and translation regulatory proteins (TTR-RBPs), which are capable of triggering rapid and robust changes in cellular gene expression. HuR plays a role in several post transcriptional events such as mRNA splicing, export, stability and translation. In the present study, we have investigated the possible consequences of relocalization of HuR on cellular processes in the context of HCV infection. We observed that 72h post transfection of infectious HCV-JFH1 RNA, there is an increase in the mRNA levels of some of the validated targets of HuR including the vascular endothelial growth factor A (VEGFA), dual specificity phosphatise 1 (MKP1) and metastasis - associated lung adenocarcinoma transcript (MALAT1). IP-RT assays demonstrated that the association of HuR with VEGFA and MKP1 was higher in HCV-JFH1 RNA transfected cells as compared to the mock transfected cells indicating that increase in HuR association could probably help in stabilization of these mRNAs. Interestingly, we observed that the association of HuR with the lncRNA MALAT1 decreases in the presence of HCV RNA, while its RNA levels increased. Earlier it has been reported that MALAT1 interacts with HuR and was predicted to interact with La. We confirmed the interaction of both HuR and La proteins with MALAT1 RNA in vitro and in the cell culture system. Results from our time course experiments suggest that relocalization of HuR and La upon HCV infection might decrease their association with the nuclear retained MALAT1 RNA leading to significant reduction in MALAT1 RNA levels at the initial time points. However at later time points, MALAT1 was found to be unregulated through activation of the Wnt/beta-catenin pathway as demonstrated using a chemical inhibitor against β-catenin. Since MALAT1 is a known regulator of epithelial mesenchymal transition (EMT) and metastasis, we further studied the physiological consequence of the observed increase in MALAT1 levels upon HCV infection. Cell migration and cell invasion studies suggested that the knockdown of MALAT1 led to the inhibition of HCV- triggered wound healing and matrigel invasion and also rescued the down regulation of E-Cadherin protein levels, an EMT marker. Our study highlights the importance of the lncRNA, MALAT1 in HCV infection and suggests its possible involvement in HCV induced HCC. Investigating the role of miRNAs in HCV pathogenesis and replication miRNAs can also regulate HCV infection and pathogenesis in multiple ways. It is known that under disease conditions, there is aberrant expression of intracellular as well as circulating miRNAs. We have investigated the expression profile of 940 human miRNAs in HCV infected patient serum samples to identify the differentially regulated miRNAs. miR-320c, miR-483-5p and the previously reported miR-125b were found to be upregulated in the serum of cirrhotic and non-cirrhotic HCV infected patient serum samples. All three miRNAs were also unregulated in the cell culture supernatant of HCV infected cells as well as within the HCV infected cells. miR-483-5p was specifically enriched in the exosomes isolated from patient serum samples. Knockdown of miR-320c and miR-483-5p did not have significant effect on HCV replication while knockdown of miR-125b affected HCV replication through regulation of one of its target genes, HuR. We observed that with time, miR-125b levels in HCV-JFH1 RNA transfected cells increase while the HuR protein levels decrease. Using luciferase reporter constructs, we demonstrated that the decrease in HuR protein levels is indeed mediated by miR-125b. Mutations in the target site of miR-125b in the HuR 3‟UTR prevented the down regulation of luciferase activity. Next we tested the effect of silencing miR-125b on HCV replication. Knockdown of miR-125b prevented the reduction in HuR protein levels but with no significant effect on HCV replication. It appeared that the HuR protein already present in the cytoplasm could be sufficient to support HCV replication. Hence similar experiments were carried out in cells depleted of HuR using either siRNA against HuR or a chemical inhibitor of nucleocytoplasmic transport of HuR, Leptomycin B. We observed that when the intracellular levels of HuR are reduced using either of the two approaches, there is a decrease in HCV replication. This is in accordance with the results obtained in the first part of the thesis. However when miR-125b was silenced in HuR depleted cells, we noticed an upregulation in the HuR protein levels by western blot analysis and a consequent increase in HCV RNA levels as quantified by qRT-PCR. From our findings, we can conclude that miR-125b mediated regulation of HuR plays an important role in HCV replication. We hypothesize that this could be a cellular response to HCV infection to which the virus responds by inducing protein relocalization. Altogether, these studies outline the importance of host factors including cellular proteins and non-coding RNAs in the regulation of HCV life cycle and pathogenesis. Results reveal the mechanistic insights into how HCV infection triggers host defense pathways, which are evaded by the virus by counter strategies.
9

Hepatitis C Virus Screening in Federally Qualified Health Centers in Rural Appalachia

Olanrewaju, Folawiyo S, Falodun, Ayotola, Jawla, Muhammed, Vanhook, Patricia, McKenzie, Stacey 12 April 2019 (has links)
The prevalence of Hepatitis C Virus (HCV) in the US is estimated at 3.5 million with 18,153 deaths in 2016. It is the most common bloodborne infection, with a higher age-adjusted mortality rate than Hepatitis B Virus or Human Immunodeficiency Virus. Without treatment, nearly 1.1 million people will die from HCV by 2060. About 41,200 new cases of HCV were reported in 41 states in the US in 2016. The reported cases of acute HCV in 2016 is 2.3 per 100,000 in Tennessee, which is more than twice the national goal set by Healthy People 2020. This is a descriptive study to ascertain the HCV prevalence and usefulness of screening in medical outreach settings (MO) compared to indigent healthcare clinics (IHC) in northeast Tennessee. This study period was from April 2017 – February 2019. Participants (n=250), were adults, who engaged in routine, opt-out HCV testing at 4 IHC and 3 MO sites in the Tri-Cities, TN region. During the screening, demographic information- age, gender, race- were collected and the de-identified data were analyzed using Statistical Analysis System (SAS 9.3) to perform a descriptive analysis. Also, several discrete Chi-Square tests of independence between the demographic variables, screening locations, and HCV antibody prevalence was conducted. A total of 250 clients were screened for HCV. The majority of clients screened were non-Hispanic whites 228 (91.20%); females 136 (54.40%); young adults 131 (52.40%) and at IHC clinics 187 (74.80%). Screening showed HCV antibody prevalence of 14.8%. The majority of positive cases were non-Hispanic whites 36 (97.30%; P=0.1561); females 19 (51.35%; P=0.6867) and young adults 23 (62.16%; P=0.286). The prevalence at the IHC clinics and MO settings were 36 (97.30%; P=0.0006) and 1(2.70%) respectively. This analysis shows the higher yield of targeted HCV screening at IHC clinics. Focused HCV screening is critical in the era of opioid epidemic, particularly when direct-acting antiviral agents (DAAs) which offer a Sustained Virologic Response (SVR) rate of more than 90% are available. The use of case control or cohort study designs to establish causality is recommended for improving focused HCV screening.

Page generated in 0.099 seconds