Spelling suggestions: "subject:"hertzian contact theory"" "subject:"hertziano contact theory""
1 |
Mechanical Properties of Silicon Carbide (SiC) Thin FilmsDeva Reddy, Jayadeep 08 November 2007 (has links)
There is a technological need for hard thin films with high elastic modulus. Silicon Carbide (SiC) fulfills such requirements with a variety of applications in high temperature and MEMS devices. A detailed study of SiC thin films mechanical properties was performed by means of nanoindentation. The report is on the comparative studies of the mechanical properties of epitaxially grown cubic (3C) single crystalline and polycrystalline SiC thin films on Si substrates. The thickness of both the Single and polycrystalline SiC samples were around 1-2 µm. Under indentation loads below 500 µ-Newton both films exhibit Elastic contact without plastic deformation. Based on the nanoindentation results polycrystalline SiC thin films have an elastic modulus and hardness of 422 plus or minus 16 GPa and 32.69 plus or minus 3.218 GPa respectively, while single crystalline SiC films elastic modulus and hardness of 410 plus or minus 3.18 Gpa and 30 plus or minus 2.8 Gpa respectively. Fracture toughness experiments were also carried out using the nanoindentation technique and values were measured to be 1.48 plus or minus 0.6 GPa for polycrystalline SiC and 1.58 plus or minus 0.5 GPa for single crystal SiC, respectively. These results show that both polycrystalline SiC thin films and single crystal SiC more or less have similar properties. Hence both single crystal and polycrystalline SiC thin films have the capability of becoming strong contenders for MEMS applications, as well as hard and protective coatings for cutting tools and coatings for MEMS devices.
|
2 |
Dimensioning of a cutter wheel bearings / Dimensionering av lagring till cutterhjulXie, Kebin January 2020 (has links)
Mobile Miner 40V is a machine used for rock excavation and developed by Epiroc. This machine is equipped with a large cutter wheel to perform the excavation. After a test run, some surfaces associated with bearings within the cutter wheel were found to be damaged due to scuffing - severe sliding wear. There is a static load applied to the surfaces due to gravity. However, the reason for this damaged issue was believed that there is a large dynamic load applied to the surfaces during the excavation. This dynamic load was not found in a previous FE model used to verify safety issues. Therefore, a new FE model that is more in line with reality, and a failure analysis were required. Additionally, a feasibility study for a cutter wheel with a larger dimension was also needed since a larger cutter wheel is desirable. Firstly, wear mechanisms were reviewed, and some theories were chosen to analyze the damaged issue. Since it was unknown whether the surfaces were well-lubricated or not, both cases were investigated. The Archard wear equation was used to analyze the poor-lubricated situation, while the lubrication number and the Reynolds equation were used to analyze the well-lubricated case. Secondly, contact mechanisms between the surfaces were also investigated. The investigation of the contact mechanisms involved several theories, such as the Hertzian contact theory and the impact load factor. Besides these theoretical analyses, a numerical analysis was performed. Lastly, a new FE model was established in Ansys. Both the cutter wheel which was subjected to scuffing(existing cutter wheel), and the cutter wheel with a larger dimension(larger cutter wheel) were analyzed by the use of the new FE model. The maximum and minimum wear rates obtained by the Archard wear equation are approximately 1.9・10-2mm3/m and 4.8・10-3mm3/m, which are considered as a completely unacceptable level in engineering applications. The maximum and minimum critical loads obtained by the Reynold equation are approximately 1.8kN and 24.8kN, which both are larger than the static load applied to the surfaces. The maximum and minimum critical mean contact pressures obtained by the lubrication number are approximately 65MPa and 240MPa, which both are larger than the mean contact pressure generated by the static load. No evidence shows that there is a large dynamic load applied to the surfaces during the excavation. The largest possible contact pressure on the bearings in the existing cutter wheel is very close to the limit of severely damaged. The largest possible contact pressure on the bearings in the larger cutter wheel is believed to exceed the limit of severely damaged. The previous assumption that the surfaces were damaged due to a large dynamic load was wrong. The obtained results support that the surfaces were only subjected to a static load and were damaged due to inadequate lubrication. The existing cutter wheel is operated safely with the current load cases. However, the forward thrust force is suggested to decrease when the cutting angle is large. There is a high risk if the larger cutter wheel is operated with the current load cases.
|
Page generated in 0.0798 seconds