Spelling suggestions: "subject:"heterogeneity"" "subject:"eterogeneity""
151 |
Diagenesis in seagrass vegetated sediments: biogeochemical processes on diurnal time scalesHebert, Andrew Brian 01 November 2005 (has links)
Seagrass productivity is largely limited by nutrient and light availability. However, increasing evidence suggests that sedimentary geochemical processes may play an essential role in seagrass productivity/health. Much of this work has been largely phenomenalistic and has not clearly identified the spatio-temporal behavior of the major geochemical parameters involved in diagenesis of seagrass sediments. In this study, a much broader range of both dissolved and solid phase chemical parameters in eelgrass vegetated sediments was investigated. Parallel measurements were made on adjacent unvegetated sediments (<10 m) to more clearly refine the specific influences of seagrass (Zostera marina) on chemical gradients in associated sediments. Previous studies have pointed strongly toward diurnal ??ventilation?? of sediments vegetated with seagrass by the exudation of photosynthetically produced oxygen. However, strong lateral variability of sediment geochemical parameters among and between seagrass vegetated and unvegetated sediments made the observation of diurnal effects sufficiently difficult. Changes resulting from temporal variability were difficult to discern within the spatial variability.
A critical question that is often not dealt with in the study of the early diagenesis of sediments is what spatial and temporal sampling intervals are required to account for the dominant source of variability. The auto-covariance function (ACF) was used to determine the optimum scaling length for sample intervals (?x) of ?H2S and Fe2+. Characteristic scale lengths obtained for sediments from seagrass environments are not significantly different from those observed for unvegetated sediments and averaged 13.7?? 2.2 mm. Lateral variations in our scales analyses showed that scale length approximated our sampling interval and that lateral sampling intervals were smaller than the vertical sampling intervals. Our results indicate that macrofauna dwelling in the sediment, the seagrass root/rhizomes, and aggregations of bacteria, microalgae, and meiofauna may be responsible for the vertical and lateral variability. Model calibrations and sensitivity analyses from a sediment-seagrass diagenetic model revealed that changes in physical parameters of the sediments (irrigation, advection, and porosity, for example) had the greatest effect on organic carbon and total dissolved sulfides. This study revealed that sedimentary geochemical parameters that are both vertically and laterally heterogeneous may also affect seagrass productivity.
|
152 |
Heterogeneous Firms, Labor Union and Minimum Wage RatioKuo, Shih-Ming 24 July 2008 (has links)
This study constructs a analytical framework in which the Labor Union has full bargaining power and firms are heterogeneous to analyze the economic effect for adjustment of minimum wage ratio. There are two features in this model. First, every firm shows heterogeneity in productivity and survivors of the market are only those with good productivity. Second, the labor union has sufficient power to bargain wage ratio. The main findings of this study include:
1. Increase in the minimum wage ratio raises the survival threshold and labor wage ratio, but decreases the numbers of firms.
2. Increase in the minimum wage ratio does not necessarily result in decrease of labor demand.
|
153 |
The role of habitat quality in shaping evolutionary dynamics, population dynamics, and conservation planning /Hoekstra, Jonathan M. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 119-134).
|
154 |
Effects of the spatial heterogeneity formed by Ambrosia dumosa on individual and population growth of the invasive annual grass Schismus barbatusRodriguez-Buriticá, Susana, January 2009 (has links)
Thesis (Ph. D.)--Ohio State University, 2009. / Title from first page of PDF file. Includes bibliographical references (p. 119-137).
|
155 |
Dissecting the heterogeneity of prostate cancer cellsLiu, Xin, active 2013 07 November 2013 (has links)
Prostate cancer (PCa) is heterogeneous containing phenotypically diverse cells. It is unclear whether these phenotypically different PCa cells are functionally distinct and possess divergent tumorigenic potential. Androgen signaling plays important roles in differentiation and survival of malignant PCa cells, and prostate specific antigen (PSA) as one of the androgen signaling target genes is used as a biomarker of AR signaling to assess tumor progression and evaluate therapeutic efficiency in clinic. Here we present evidence for discordant AR and PSA expression resulting in AR⁺/PSA⁺, AR⁺/PSA⁻, AR⁻/PSA⁻, and AR⁻/PSA⁺ PCa cells in human tumors. We also show that prostate tumor PSA mRNA levels inversely correlate with poor clinical outcomes and patient survival. By employing a lentiviral reporter system, we have fractionated bulk PCa cells into PSA⁺ and PSA⁻[superscript '/lo'] cell populations, with the former being AR⁺/PSA⁺ and the latter containing both AR⁺/PSA⁻ and AR⁻/PSA⁻ cells. The PSA⁺ and PSA⁻[superscript '/lo'] PCa cells demonstrate distinct molecular, cellular, and tumor-propagating properties. PSA⁻[superscript '/lo'] PCa cells are quiescent and refractory to stresses including androgen deprivation, exhibit high clonogenic potential, and possess long-term tumor-propagating capacity. They preferentially express stem cell genes and can undergo asymmetric cell division to generate PSA⁺ cells. Of great clinical interest, PSA⁻[superscript '/lo'] PCa cells can initiate robust tumor development and resist androgen ablation in castrated hosts, and they harbor highly tumorigenic castration resistant PCa cells. In contrast, PSA⁺ PCa cells possess more limited tumor-propagating capacity, undergo symmetric division, and are sensitive to castration. Systemic androgen levels dynamically regulate the relative abundance of PSA⁺/PSA⁻[superscript '/lo'] PCa cells in the tumors, which in turn impact the kinetics of tumor growth. Further studies reveal that the PSA⁻[superscript '/lo'] PCa cell population harbors several overlapping but nonidentical tumorigenic subsets including ALDH⁺, CD44⁺, and [alpha]2[beta]1⁺ cells and ALDH⁺CD44⁺[alpha]2[beta]1⁺ can further enrich castration resistant PCa cells. These observations together suggest that heterogeneous PCa cells are organized as a tumorigenic hierarchy. Our results have important implications in understanding how different subpopulations of PCa cells manifest differential responses to current androgen deprivation therapy (ADT). / text
|
156 |
Depositional systems and sequence stratigraphy of the M1 sandstone in Tarapoa, EcuadorYe, Yu 02 February 2015 (has links)
Campanian M1 Sandstone is one of the major prospective sandstone units in the Tarapoa field in Oriente Basin, Ecuador. The M1 Sandstone is always markedly sharp based, averages 25 m in thickness, shows upward increasing marine bioturbation and generally fines upward from coarse to very fine grained sandstone. In cores, the sandstones at base are amalgamated coarse to fine grained with prominent cross stratification (dm thick), sometimes clearly bi-directional and contains mud drapes. These suggest strong tidal or fluvial-tidal currents in estuary channels or delta distributary channels. The finer grained intervals in the middle are brackish-water intensely bioturbated and dominated by mud drapes, wavy and flaser bedding suggestive of intertidal flats. Associated overlying coals and coaly shales suggest supratidal conditions. The sandstones at top are cross stratified and contain mud drapes. These again suggest strong tidal or fluvial-tidal currents in estuary channels or delta distributary channels. The stacking pattern of facies in M1 Sandstone reveals the evolution of the M1 depositional system, as well as the sequence stratigraphy of M1 sandstone. The evolution includes four stages of deposition which indicates an initial sea level rise, a subsequent sea level fall, and another sea level rise. Lateral sand-mud heterogeneity exists in the study area, forming “shale barriers”, i.e. elongate shale-rich zones that are lateral barriers to hydrocarbon migration. They are interpreted to be abandoned tidal channels filled with muddy tidal flat deposits during the sea level fall. An alternative hypothesis was established to explain the stacking pattern of facies in M1 Sandstone. A tide-dominated delta with poor fluvial input experienced intense tidal erosion and produced a sharp base at the base of M1 Sandstone. Then subtidal sand bars, intertidal flats, and supratidal sediments were deposited in sequence during a continuous regression. The core and well logs in an extension of the study area in the northwest is interpreted as more distal open shelf deposits, beyond the mouth of the Tarapoa estuary system, where transgressive tidal shelf ridges were coeval with the Tarapoa estuary system. This interpretation allows us to predict the environment between the two areas as a transition zone between tide-dominated estuary and open shelf. / text
|
157 |
Investigation of the effects of buoyancy and heterogeneity on the performance of surfactant floodsTavassoli, Shayan 16 February 2015 (has links)
The primary objectives of this research were to understand the potential for gravity-stable surfactant floods for enhanced oil recovery without the need for mobility control agents and to optimize the performance of such floods. Surfactants are added to injected water to mobilize the residual oil and increase the oil production. Surfactants reduce the interfacial tension (IFT) between oil and water. This reduction in IFT reduces the capillary pressure and thus the residual oil saturation, which then results in an increase in the water relative permeability. The mobility of the surfactant solution is then greater than the mobility of the oil bank it is displacing. This unfavorable mobility ratio can lead to hydrodynamic instabilities (fingering). The presence of these instabilities results in low reservoir sweep efficiency. Fingering can be prevented by increasing the viscosity of the surfactant solution or by using gravity to stabilize the displacement below a critical velocity. The former can be accomplished by using mobility control agents such as polymer or foam. The latter is called gravity-stable surfactant flooding, which is the subject of this study. Gravity-stable surfactant flooding is an attractive alternative to surfactant polymer flooding under certain favorable reservoir conditions. However, a gravity-stable flood requires a low velocity less than the critical velocity. Classical stability theory predicts the critical velocity needed to stabilize a miscible flood by gravity forces. This theory was tested for surfactant floods with ultralow interfacial tension and found to over-estimate the critical velocity compared to both laboratory displacement experiments and fine-grid simulations. Predictions using classical stability theory for miscible floods were not accurate because this theory did not take into account the specific physics of surfactant flooding. Stability criteria for gravity-stable surfactant flooding were developed and validated by comparison with both experiments and fine-grid numerical simulations. The effects of vertical permeability, oil viscosity and heterogeneity were investigated. Reasonable values of critical velocity require a high vertical permeability without any continuous barriers to vertical flow in the reservoir. This capability to predict when and under what reservoir conditions a gravity-stable surfactant flood can be performed at a reasonable velocity is highly significant. Numerical simulations were also used to show how gravity-stable surfactant flooding can be optimized to increase critical velocity, which shortens the project life and improves the economics of the process. The critical velocity for a stable surfactant flood is a function of the microemulsion viscosity and it turns out there is an optimum value that can be used to significantly increase the velocity and maintain stability. For example, the salinity gradient can be optimized to gradually decrease the microemulsion viscosity. Another alternative is to inject a polymer drive following the surfactant solution, but using polymer complicates the process and adds to its cost without significant benefit in most gravity-stable surfactant floods. A systematic approach was introduced to make decisions on using polymer in applications based on stability criteria and cost. Also, the effect of an aquifer on gravity-stable surfactant floods was investigated as part of a field-scale study and strategies were developed to minimize its effect on the process. This study has provided new insights into the design of an optimized gravity-stable surfactant flood. The results of the numerical simulations show the potential for high oil recovery from gravity-stable surfactant floods using horizontal wells. Application of gravity-stable surfactant floods reduces the cost and complexity of the process. The widespread use of horizontal wells has greatly increased the attractiveness and potential for conducting surfactant floods in a gravity-stable mode. This research has provided the necessary criteria and tools needed to determine when gravity-stable surfactant flooding is an attractive alternative to conventional surfactant-polymer flooding. / text
|
158 |
Tracing human cancer evolution with hypermutable DNANaxerova, Kamila 04 February 2015 (has links)
Metastasis is the main cause of cancer morbidity and mortality. Despite its clinical significance, several fundamental questions about the metastatic process in humans remain unsolved. Does metastasis occur early or late in cancer progression? Do metastases emanate directly from the primary tumor or give rise to each other? How does heterogeneity in the primary tumor relate to the genetic composition of secondary lesions? Addressing these questions in representative patient populations is crucial, but has been difficult so far. Here we present a simple, scalable PCR assay that enables the tracing of tumor lineage in patient tissue specimens. Our methodology relies on somatic variation in highly mutable polyguanine (poly-G) repeats located in non-coding genomic regions. We show that poly-G mutations are present in a variety of human cancers. Using colon carcinoma as an example, we demonstrate an association between patient age at diagnosis and tumor mutational burden, suggesting that poly-G variants accumulate during normal division in colonic stem cells. We further show that poorly differentiated colon carcinomas have fewer mutations than well-differentiated tumors, possibly indicating a shorter mitotic history of the founder cell in these cancers. We collect multiple spatially separated samples from primary carcinomas and their metastases and use poly-G fingerprints to build well-supported phylogenetic trees that illuminate each patient's path of progression. Our results imply that levels of intra-tumor heterogeneity vary significantly among patients.
|
159 |
Dynamic Resource Scheduling in Cloud Data CenterZhang, Yuan 14 September 2015 (has links)
No description available.
|
160 |
Experimental studies on the fate of diversity in heterogeneous environmentsKassen, Rees M. January 2000 (has links)
Environmental heterogeneity has often been suggested as a general explanation for patterns of diversity at scales ranging from individuals within populations to communities within landscapes. I evaluate this proposition using laboratory experiments with two microbial species, the unicellular chlorophyte Chlamydomonas reinhardtii and the common bacterium Pseudomonas fluorescens. These experiments contrast the fate of diversity following selection in heterogeneous and homogeneous environments. Specifically, I show that (1) an individual's breadth of adaptation evolves to match the amount of environmental variation, specialists evolving in environments that remain constant through time and generalists evolving in environments that vary through time irrespective of the scale at which environmental variation occurs relative to the lifetime of an individual; (2) the maintenance of diversity in a spatially heterogeneous environment is context-dependent, diversity being more readily maintained when environmental conditions are very different and genotypes are widely divergent; (3) selection in heterogeneous environments represents a plausible mechanism for two well-known patterns of diversity at large spatial scales, namely that between species diversity and both productivity and disturbance. This thesis thus demonstrates that environmental heterogeneity is a plausible, and perhaps very general, factor responsible for the diversity of natural communities.
|
Page generated in 0.0631 seconds