Spelling suggestions: "subject:"heterogeneous photocatalytic"" "subject:"eterogeneous photocatalytic""
1 |
Fotochemická degradace parabenůFREJLACHOVÁ, Kristýna January 2017 (has links)
The aim of this master thesis was to investigate a photochemical degradation of three representatives of parabens (methylparaben, ethylparaben and propylparaben) in aqueous solutions. Two experimental arragements were adopted in the study: a heterogeneous photocatalytic process on an immobilized TiO2 and a reaction in a homogeneous mixture; in the latter arrangement, the effect of Fe(III) concentrations was examined.
|
2 |
Degradation of Microplastic Residuals in Water by Visible Light PhotocatalysisTofa, Tajkia Syeed January 2018 (has links)
Microplastic (MP) pollution has recently been recognized as a threat to the biosphere including humans due to its widespread distribution, persistent nature and infinitesimal size. This study focused on the solid phase degradation of microplastic residues (particularly low density polyethylene, LDPE) in water through heterogeneous photocatalysis process by designed photocatalysts of zinc oxide nanorods (ZnO NRs) and platinum nanoparticles deposited on zincoxide nanorods (Pt NPs-ZnO NRs) under visible light irradiation. These photocatalysts were assessed following standard protocol (ISP 10678: 2010), and characterized using SEM, EDX andoptical spectroscopies (UV-VIS and PL). Deposition of Pt-NPs on ZnO NRs for certain minutes has been found optimum that enhanced the photodegradation process about 38% under UV irradiation and 16.5% under visible light irradiation by improving of both electrons-holes pair separation process and visible light absorption. Photocatalytic degradation of LDPE films was confirmed by FTIR spectroscopy, dynamic mechanical analyzer (DMA), optical and electron microscopes. When LDPE film irradiated in presence of Pt-ZnO, degradation was found quicker than ZnO alone of similar concentration which exhibited formation of a large number of wrinkles, cracks and cavities on the film surface. Dynamic mechanical analyzer (DMA) test indicated stiffness and embrittlement of exposed LDPE films in presence of photocatalysts. Thus, the present work provides a new insight about modified catalysts for the degradation of microplastics in water using visible light.
|
3 |
Fotodegradace hydrokortizonu v homogenní a heterogenní fotokatalytické reakci / Photodegradation of hydrocortisone in homogeneous and heterogeneous photocatalytic reactionDOUBKOVÁ, Lucie January 2015 (has links)
The aim of this thesis was to measure the kinetics of photochemical degradation of hydrocortisone in heterogeneous photocatalytic reaction on immobilized TiO2 and in homogeneous photocatalytic reaction with Fe(III) using UV-VIS and HPLC for measuring the degradation kinetics.
|
4 |
Modelling of Petroleum Wastewater Photodegradation in a Fluidized Bed ReactorNyembe, N. 04 1900 (has links)
M.Tech. (Department of Chemical Engineering, Faculty of Engineering and Technology), Vaal University of Technology / Petroleum wastewater is highly contaminated with toxic organic pollutants that are harmful to the environment. The heterogeneous photocatalytic oxidation (HPO) process has shown the ability to remove these pollutants through the application of a fluidized bed reactor (FBR). The purpose of the study was to apply response surface modelling (RSM) and computational fluid dynamics (CFD) to optimize the operating conditions for the photodegradation process in an FBR. This was done by investigating the hydrodynamics, photodegradation efficiency and reaction kinetics; that gave a holistic view on the performance of the FBR.
The hydrodynamic study focused on modelling the axial liquid velocity, gas hold-up and turbulence quantities due to their substantial impact on the design and performance of the FBR. This was done by implementing the Eulerian-Eulerian approach which solves the continuity and momentum equations for each phase. In addition, the standard k-ε turbulence model was used to capture the turbulent characteristics in the liquid phase. A numerical optimization technique (desirability) was used to determine the optimal simulation setting methods; that were found to be a fine grid size (500 000 cells), 2nd Order Upwind discretization scheme and a small time step size (0.001) and gave the best desirability (0.985). The axial liquid velocity was maximal towards the centre of the reactor and decreased towards the wall. The same trend was seen with the local gas hold-up, where it was high towards the centre and low near the wall region. This was an indication that the bubbles tended to gather towards the central region as they move up. Furthermore, the bubbles had a spherical–like shape due to the low superficial gas velocity and operating within the homogeneous regime. The turbulent kinetic energy increased at distances away from the distributor region, due to the bubbles accelerating, and it balanced well with the energy introduced by the bubbles.
Central composite design (CCD), which is a type of response surface modelling technique, was used to investigate and optimize the photodegradation operating parameters. The maximal degradation efficiency in the current study was found to be 65.9%, which was relatively low when compared to literature (80.84%). This was attributed to the increase in the catalyst particle size from nanometer to micrometer. Furthermore, the second-order empirical model that was developed, using the analysis of variance (ANOVA), presented a sufficient correlation to the photodegradation experimental data. The optimal photodegradation operating conditions were found to be: superficial gas velocity of 17.32 mm/s, composite catalyst loading of 1.0 g/L, initial pH level of 3.5 and reaction time being 210 min. Using the Langmuir-Hinshelwood model, it was found that the photocatalytic degradation of petroleum wastewater follows pseudo first-order reaction kinetics. Since the photocatalytic degradation mechanism of phenol follows three stages whereby the second stage is the photocatalytic degradation on the surface of the catalyst to form by-products. This is the rate dominant stage and follows the pseudo firstorder reaction kinetics.
|
5 |
APLICAÇÃO DE PROCESSOS OXIDATIVOS AVANÇADOS HOMOGÊNEOS E HETEROGÊNEOS NA DEGRADAÇÃO DE EFLUENTES DE CURTUMEFlores, Rubia Gomes 31 January 2008 (has links)
This study investigated the application of advanced oxidative processes for the homogeneous and heterogeneous degradation of a tanning effluent. The catalytic activity of a solid oxide containing manganese was evaluated in the heterogeneous systems. The experiments were performed in a photocatalytic batch reactor in laboratory scale. The solid
used was the commercial product Birm®, consisting mainly of crystalline silica, silicate, aluminum and manganese dioxide. The adsorption results using Birm® in synthetic sewage adjusted to the models of Langmuir and Freundlich and established that the adsorption capacity of the Birm ® is low. The synthetic and real tannery effluents were assessed by the degradation kinetics of photochemical homogeneous (H2O2/UV) processes and heterogeneous
(UV/H2O2/Birm®) at different pH, concentration of H2O2 and catalyst. The degradation kinetics of the ES followed in law and kinetics order of pseudofirst showing that the Birm® presented no catalytic activity in appreciable color degradation of the synthetic effluent. But when the solid was evaluated for the degradation of the real tannery effluent, it proved to be active, with kinetics of degradation occurring more efficiently than the homogeneous system (H2O2/UV) one. In both effluents there was a catalytic decomposition of hydrogen peroxide.
However, the decomposition in ES resulted in inactive products for the catalytic oxidation or free radicals, which possibly were disabled in difusional ways and didn t react with the effluent. The increasing of the concentration of nitrate and sulfate also demonstrated a good the treatment of tanning effluent. / Este estudo investigou a aplicação de processos oxidativos avançados, homogêneos e heterogêneos, na degradação de efluentes líquidos industriais de couro sintético e real. O
efluente sintético é uma solução aquosa do corante de couros Acid Orange G. O efluente real é oriundo da indústria de processamento de couro, coletado após o decantador secundário do tratamento por lodos ativados. Os experimentos foram realizados em reator fotocatalítico
descontínuo em escala de laboratório. O sólido utilizado como catalisador heterogêneo é um composto comercial denominado Birm®, constituído principalmente de sílica cristalina, silicato de alumínio e dióxido de manganês. A adsorção do efluente sintético sobre o Birm® ajustou-se aos modelos de Langmuir e de Freundlich e, o sólido apresentou baixa capacidade adsortiva. As cinéticas de degradação dos efluentes pelos processos fotoquímicos homogêneo
(H2O2/UV) e heterogêneo (UV/H2O2/Birm®) foram avaliadas em diferentes valores de pH, concentração de H2O2 e de catalisador. Os resultados estabeleceram o modelo cinético de
pseudoprimeira ordem para a degradação do efluente sintético. O Birm® apresentou atividade catalítica apenas para o efluente de curtume, apesar de a decomposição catalítica do peróxido de hidrogênio ter ocorrido em ambos efluentes. Supõe-se que essa atividade foi potencializada
pela diversidade de compostos orgânicos presentes no efluente de curtume. A degradação deste efluente também foi comprovada pelo aumento das concentrações de sulfato e nitrato.
|
Page generated in 0.0912 seconds