• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural Study of Heterogeneous States in Lead-free NBT-based Single Crystals

Luo, Chengtao 13 December 2016 (has links)
Growing environmental concerns, coupled with increasing regulatory restrictions, are requiring industries to develop non-lead-based compositions of ferroelectric and piezoelectric materials. These materials—now widely used in sensors, actuators, and transducers—are for the most part lead-based compounds such as Pb(Zr,Ti)O₃ (PZT). Indeed, PZT represents the dominant market share for use in these technologies. Moreover, next generation compounds, which include Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O₃-xat%PbTiO₃ (PMN-x%PT) crystals with ultrahigh piezo-/electromechanical properties, are also Pb-based systems and thus are problematic for meeting more restrictive environmental standards. As alternative, Pb-free ferroelectrics such as NBT-derived single crystals represent viable next-generation materials for use in ferro-/piezoelectric applications. Development of these types of NBT-based crystals has made important advancements in the last decade. In fact, the performances of NBT-based materials are beginning to approach the properties of the widely used commercial PZT ceramic material. Nonetheless, additional studies are needed before it being able to compete with PMN-x%PT and PZN-x%PT crystals in next-generation applications. As a new type of piezoelectric material, much remains to be learned about Pb-free piezoelectric crystals. For instance, in addition to enhancing our understanding the nature of the piezoelectric third-rank tensor coefficients such as d₃₃ and d₁₅, a thorough knowledge of the Curie temperature, leakage current, and electromechanical properties is also essential for increasing the applications potential of these crystals. As detailed herein, multiple dopants may have to be incorporated into NBT to modify its microstructure and properties to meet these specific requirements, which may further complicate its chemical structure-property relationships. This study, therefore, was designed to investigate the heterogeneous structure of NBT-based single crystals, using x-ray diffraction, transmission electron microscopy, and neutron inelastic scattering, with the goal of investigating the mechanism coupling of morphotropic phase boundary (MPB) and the maximum property responses in A-site disordered perovskite Pb-free piezoelectric systems. Using the framework of polar nanoregions and adaptive phase theory, I sought to determine how the nanostructure of these single crystals change with temperature and composition—and how these factors impact its properties. Diffuse scattering, domain morphology, and phonon dispersions were used to investigate both the static and dynamic properties of these heterogeneous structures. / Ph. D. / Growing environmental concerns, coupled with increasing regulatory restrictions, are requiring industries to develop non-lead-based compositions of ferroelectric and piezoelectric materials. These materials—now widely used in sensors, actuators, and transducers—are for the most part lead-based compounds such as Pb(Zr,Ti)O<sub>3</sub> (PZT). Indeed, PZT represents the dominant market share for use in these technologies. Moreover, next generation compounds, which include Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>-xat%PbTiO<sub>3</sub> (PMN-x%PT) crystals with ultrahigh piezo- /electromechanical properties, are also Pb-based systems and thus are problematic for meeting more restrictive environmental standards. As alternative, Pb-free ferroelectrics such as (Na<sub>1/2</sub>Bi<sub>1/2</sub>)TiO<sub>3</sub> (NBT) -derived single crystals represent viable next-generation materials for use in ferro-/piezoelectric applications. Development of these types of NBT-based crystals has made important advancements in the last decade. In fact, the performances of NBT-based materials are beginning to approach the properties of the widely used commercial PZT ceramic material. Nonetheless, additional studies are needed before it being able to compete with PMN-x%PT and PZN-x%PT crystals in next-generation applications. As a new type of piezoelectric material, much remains to be learned about Pb-free piezoelectric single crystals. In addition to enhancing our understanding the nature of the piezoelectric properties, increasing the applications potential of these crystals is also essential. And these specific requirements from different applications further push the researchers to find a more effective model to lead the piezoelectric single crystals growth as well as developments. This study, therefore, was designed to investigate the unique microstructure of NBTbased single crystals, using x-ray diffraction, transmission electron microscopy, and neutron inelastic scattering, with the goal of investigating the mechanism coupling between the chemical compositions and the maximum property responses in these specific Pb-free piezoelectric systems. Using the framework of an advanced microstructure description model, I sought to determine how the nanostructure of these single crystals change with temperature and composition—and how these factors impact its properties. The results from different experiment methods also successfully supported each other and brought new perspectives to the Pb-free material researches.
2

Nevienalyčių struktūrų dinaminio deformavimo ir irimo modeliavimas diskrečiųjų elementų metodu / Simulation of dynamic deformation and fracture behaviour of heterogeneous structures by discrete element method

Vadluga, Vaidas 13 February 2008 (has links)
Tyrimų sritis ir darbo aktualumas. Kuriant modernias įvairios paskirties mechanines sistemas, technologijas ir įrangą, svarbiomis tampa jas sudarančios medžiagos. Savaime suprantama, kad žinomos ir naujai kuriamos medžiagos dabar kur kas išsamiau nagrinėjamos daugelyje mokslo šakų, įskaitant ir me-džiagų mechaniką. Visos medžiagos mezo- ir mikrostruktūros požiūriu yra ne-vienalytės. Jų mikroskopinės savybės skirtingos, lyginant su įprastu kontinuu-mu. Medžiagų savybėms tirti dažniausiai taikomi eksperimentiniai metodai. Eksperimentiniais metodais ištirti medžiagos struktūras ir jose vykstančius procesus ir įvertinti tam tikras jų savybes labai brangu. Tai viena priežasčių, kodėl skaitinis modeliavimas tampa realia tyrimų alternatyva. Skaitinį eksperi-mentą galima kartoti daug kartų, valdant bandinio parametrus, išlaikant tas pa-čias sąlygas, ir stebėti reiškiniui būdingus rodiklius visame tūryje. Šiuolaikiniai modeliavimo metodai yra kompleksiniai. Jie jungia fenome-nologines ir statistines idėjas, o matematiniai modeliai sudaromi taikant konti-nuumo mechanikos ir jų diskrečiųjų modelių bei molekulinės dinamikos pri-klausomybes. Diskrečiųjų elementų metodas (DEM) taip pat priskiriamas šiuo-laikinių metodų kategorijai. Jis skirtas kontaktuojančių dalelių sistemų dinami-niam modeliavimui. Kintanti dalelių sistemos topologija – būdingas metodo požymis. Pastaruoju metu DEM jau taikomas kontinuumui modeliuoti ir praktikoje aktualiems irimo uždaviniams spręsti. Reikia pastebėti... [toliau žr. visą tekstą] / Research area and topicality of the work. Mechanical properties and their evolution under loading are the most significant factors for the development of various mechanical structures, technologies and equipment. It seems to be natu-ral that deeper understanding of the behaviour of existing and design of new materials presents a challenge in different research areas. It should be noted, that all the materials are heterogeneous in meso- and micro- scales. They exhibit essential differences, compared to the macroscopic continuum behaviour. Basically, both experimental and numerical simulation methods are extensively applied for investigation purposes. Experimental techniques, capable of giving a realistic view of the inside of the material and extracting the real data, are very expensive. Therefore, the nu-merical simulation tools are extensively used as an alternative for investigation purposes. They have considerable advantages allowing the reproduction of multiple experiments and providing comprehensive data about ongoing phe-nomena. Recently, numerical technologies have become highly multidisciplinary subjects. They comprise phenomenological and statistical ideas, while mathe-matical models employ the relations of continuum mechanics, classical discre-tization methods and molecular dynamics. The Discrete Element Method (DEM) is one of new methods. It is aimed at simulating the dynamic behaviour of the contacting particles. Variable topology of the system of particles is an... [to full text]
3

Efficient parameterized algorithms on structured graphs

Nelles, Florian 27 July 2023 (has links)
In der klassischen Komplexitätstheorie werden worst-case Laufzeiten von Algorithmen typischerweise einzig abhängig von der Eingabegröße angegeben. In dem Kontext der parametrisierten Komplexitätstheorie versucht man die Analyse der Laufzeit dahingehend zu verfeinern, dass man zusätzlich zu der Eingabengröße noch einen Parameter berücksichtigt, welcher angibt, wie strukturiert die Eingabe bezüglich einer gewissen Eigenschaft ist. Ein parametrisierter Algorithmus nutzt dann diese beschriebene Struktur aus und erreicht so eine Laufzeit, welche schneller ist als die eines besten unparametrisierten Algorithmus, falls der Parameter klein ist. Der erste Hauptteil dieser Arbeit führt die Forschung in diese Richtung weiter aus und untersucht den Einfluss von verschieden Parametern auf die Laufzeit von bekannten effizient lösbaren Problemen. Einige vorgestellte Algorithmen sind dabei adaptive Algorithmen, was bedeutet, dass die Laufzeit von diesen Algorithmen mit der Laufzeit des besten unparametrisierten Algorithm für den größtmöglichen Parameterwert übereinstimmt und damit theoretisch niemals schlechter als die besten unparametrisierten Algorithmen und übertreffen diese bereits für leicht nichttriviale Parameterwerte. Motiviert durch den allgemeinen Erfolg und der Vielzahl solcher parametrisierten Algorithmen, welche eine vielzahl verschiedener Strukturen ausnutzen, untersuchen wir im zweiten Hauptteil dieser Arbeit, wie man solche unterschiedliche homogene Strukturen zu mehr heterogenen Strukturen vereinen kann. Ausgehend von algebraischen Ausdrücken, welche benutzt werden können, um von Parametern beschriebene Strukturen zu definieren, charakterisieren wir klar und robust heterogene Strukturen und zeigen exemplarisch, wie sich die Parameter tree-depth und modular-width heterogen verbinden lassen. Wir beschreiben dazu effiziente Algorithmen auf heterogenen Strukturen mit Laufzeiten, welche im Spezialfall mit den homogenen Algorithmen übereinstimmen. / In classical complexity theory, the worst-case running times of algorithms depend solely on the size of the input. In parameterized complexity the goal is to refine the analysis of the running time of an algorithm by additionally considering a parameter that measures some kind of structure in the input. A parameterized algorithm then utilizes the structure described by the parameter and achieves a running time that is faster than the best general (unparameterized) algorithm for instances of low parameter value. In the first part of this thesis, we carry forward in this direction and investigate the influence of several parameters on the running times of well-known tractable problems. Several presented algorithms are adaptive algorithms, meaning that they match the running time of a best unparameterized algorithm for worst-case parameter values. Thus, an adaptive parameterized algorithm is asymptotically never worse than the best unparameterized algorithm, while it outperforms the best general algorithm already for slightly non-trivial parameter values. As illustrated in the first part of this thesis, for many problems there exist efficient parameterized algorithms regarding multiple parameters, each describing a different kind of structure. In the second part of this thesis, we explore how to combine such homogeneous structures to more general and heterogeneous structures. Using algebraic expressions, we define new combined graph classes of heterogeneous structure in a clean and robust way, and we showcase this for the heterogeneous merge of the parameters tree-depth and modular-width, by presenting parameterized algorithms on such heterogeneous graph classes and getting running times that match the homogeneous cases throughout.

Page generated in 0.1042 seconds