Spelling suggestions: "subject:"heusler"" "subject:"heuslers""
21 |
MAGNETOTRANSPORT PROPERTIES OF POLYCRYSTALLINE Mn_(3-x)Fe_xSn (x = 1, 2) THIN FILMSWetzel, Duston 01 December 2024 (has links) (PDF)
The incredible progress of the microelectronics industry in the last several decades hasbeen primarily due to the progressive miniaturization and optimization of the MOSFET. However, the rate of this progress is becoming unsustainable by these means. Of several proposed replacements, one of the most popular ideas is to utilize electronic spin in logical processing. The discovery of Giant Magntoresistance (GMR) in layered thin film heterostructures and the subsequent development of Tunneling Magnetoresistance (TMR) devices revolutionized magnetic field sensing, which allowed magnetic domains in hard drives to get much smaller. This enabled hard drives to get denser, but because current charge-based devices are still much faster and smaller and require less energy to switch than magnetic domains, charge-based devices are still preferred for primary storage (RAM). The discoveries of Spin Orbit Torque (SOT) and Spin Transfer Torque (STT) have demonstrated that spin can be utilized for writing as well due to interactions between spin and the magnetization of a ferromagnet. Although magnetoresistive RAM (MRAM) has already been successfully implemented as a commercially available product, it remains small and expensive and is only used in specific applications. This is partially due to limitations of the individual constituent materials as spin filters or conductors, and partially due to incompatibility of adjacent crystal layers in a heterostructure. Many different types of mai terials have recently been identified as promising candidates for an optimized spin-based device. Manganese-based Heusler compounds constitute a large subset of these theoretically predicted materials due to their high perpendicular magnetic anisotropy (PMA), high curie temperatures, and low saturation fields, as well as their spin conduction, all with very similar crystal structures. In this work, I study magnetotransport and magneto-optical properties of Mn2FeSn and Fe2MnSn thin films and review properties of their parent compound Mn3Sn, which has been reported on extensively in the literature. My experimental methods involved a combination of homemade setups and sophisticated commercial tools. I may have observed a large topological Hall effect in a D019 Mn2FeSn thin film, and did observe a major substrate dependence on the properties of D019 Fe2MnSn thin films and a curious current dependence on the magnetoresistance behaviour in an Fe2MnSn thin film. This work emphasizes the sensitivity of Heusler alloy stoichiometry.
|
22 |
Deformation mechanisms of nanostructured thermoelectric alloys / Mécanismes de déformations de matériaux thermoélectriques nanostructurésAumand, Matthieu 12 September 2018 (has links)
L’amélioration de la figure de mérite ZT des matériaux thermoélectriques (TE) est actuellement entreprise via des procédés de métallurgie, tels que la nanostructuration et l’introduction contrôlée de dislocations. De tels niveaux de complexité de microstructure soulèvent la problématique du comportement mécanique associé. En effet, malgré les valeurs de dureté et module d’élasticité connues pour la plupart des matériaux TE, rares sont les données sur les mécanismes de déformation. Portant sur le Half-Heusler Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2 de type p, notre étude multi-échelle propose de caractériser les mécanismes de déformation de cet alliage. Les expérimentations menées aux échelles macroscopique, mésoscopique, et microscopique sont pensées pour déclencher puis examiner les mécanismes de plasticité. Les tests en compression sur échantillons massifs dans un environnement de pression de confinement et température ont aboutis à une rupture exclusivement fragile. Les mécanismes de rupture sont identifiés comme associés une propagation de fissure intra- et inter granulaire, dépendant de la taille de grain rencontrée par le front de fissure. La méthode « indentation toughness » à l’échelle mésoscopique permet l’insertion de fissures, où les analyses MET en front de fissure confirment une abscence d’activité de dislocations, également confirmé par 3D-EBSD. À l’échelle microscopique, les données de compression de micro-pilliers ainsi que les observations de faciès de fracture sont comparable avec les échantillons massifs. Ces résultats peuvent être utilisés comme guide pour produire des matériaux TE plus résistants à la fissuration. / Increasing the figure of merit ZT of thermoelectric (TE) alloys is a challenge that is currently attempted through various metallurgy methods, including nanostructuring and dislocation engineering. Microstructures with such level of complexity raises questions about the mechanical reliability of these new materials. Indeed, despite the values of hardness and elastic modulus known for the clear majority of TE materials, the data on deformation mechanisms are still rare. Focusing on the nanostructured p-type half-Heusler Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2, our multi-scale study aims to analyze the deformation mechanisms. Experiments conducted at macro-, meso- and micro-scale are designed to trigger and assess plasticity mechanisms. Compression testing on bulk samples subject to a confining pressure environment and temperature leads to an exclusive brittle failure. The mixed-mode failure mechanisms involve switching between intra- and inter-granular crack propagation, depending on the grain size met by the crack tip. Indentation toughness at meso-scale generates cracks, while TEM analysis of the crack tip area confirms no dislocation activity and 3D-EBSD technique confirms the mixed crack propagation behavior. At micro-scale, micro-pillar compression stress-strain curves and failure mechanisms are comparable with bulk samples testing analysis. These results can be used to provide design guidelines for more crack-resistant TE alloys.
|
23 |
Fe2VGa摻雜Ti及Si之電子結構跟熱電性質之研究 / Electronic structure and thermoelectric properties of Ti and Si doped Fe2VGa黃大頌, Huang, Ta Sung Unknown Date (has links)
熱電材料被視為其中一種可以解決能源問題的材料,其中具有高功率因子(power factor)的Heusler系統近年來被廣泛的研究。這篇論文中,我們利用取代效應探討鐵釩鎵(Fe2VGa) Heusler系統的熱電性質以及磁性性質,其中包括鈦原子(Ti)取代釩原子(V)跟矽原子(Si)取代鎵原子(Ga)。我們使用電弧熔煉法合成所有樣品,包括Fe2V1-xTixGa (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) 和 Fe2VGa1-xSix (x = 0, 0.05, 0.1, 0.15, 0.2)。在X光繞射的分析中,我們展示了所有樣品都是L21的晶體結構還有每個樣品的晶格常數;同時,我們利用能量分散式光譜儀揭露了樣品的化學計量式。當取代濃度大於0.1時,兩個不同取代系統的功率因子(power factor=S2/ρ)皆會大幅度的提升,這現象可以歸功於能態密度中費米能階的移動。由能帶計算中我們得知鐵釩鎵系統的費米能階坐落在pseudo gap中,然而取代效應使費米能階移出pseudo gap,進而跟能態密度有交錯,導致Seebeck常數上升,而功率因子又與Seebeck常數成平方正比的關係,所以兩個不同取代系統的功率因子皆大幅度的提升。因為合金效應的關係,使所有有取代樣品的傳熱性都大幅度被壓抑,其中Fe2VGa0.8Si0.2的熱傳導性被抑制了兩倍。因為傳熱性的抑制以及同時功率因子的提升,使得Fe2V0.8Ti0.2Ga的熱電優值在420 K時較未被Ti取代之母材Fe2VGa提高了10倍。另外,我們也介由觀察樣品的磁化率以及磁化量探討了這些樣品的磁性性質。 / Thermoelectric application has been considered as a possible solution for electric crises, and, recently, Heusler alloys have been studied for its large power factor near room temperature. In this thesis, we investigate the thermoelectric and magnetic properties of Ti-substituted (p-type) and Si-substituted (n-type) Heusler alloy Fe2VGa. All samples including Fe2V1-xTixGa (with x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) and Fe2VGa1-xSix (with x = 0, 0.05, 0.1, 0.15, 0.2) are prepared through arc-melting method. The X-ray refinement shows their L21 crystal structure and corresponding lattice parameters, while the Energy-dispersive X-ray spectroscopy (EDX) reveals the stoichiometry. With proper substitution, with x > 0.1, the power factor of both systems is dramatically enhanced, which can be attributed to the Fermi level shifting. According to the theoretical calculation for the density of state, the Fermi level of the un-doped sample is located within the pseudogap, while the Fermi level starts to move out the pseudogap since the substituting effect applying, and it will consequently intercept with the conduction or valence band. Due to the alloying effect, the thermal conductivity of Fe2VGa0.8Si0.2 sample is significantly suppressed by a factor of 2. Therefore, we observed that the figure of merit (zT) in Fe2V0.8Ti0.2Ga sample is enhanced by 10 times at 420 K as compared with the parent compound Fe2VGa. Their magnetic properties are also investigated by means of susceptibility and magnetization measurements.
|
24 |
Estudo do campo hiperfino magnetico no sitio do Ta-181 nas ligas de Heusler Cosub2ScSn, Cosub2ScGa e Cosub2HfSnATTILI, ROBERTA N. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:37:01Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:56:28Z (GMT). No. of bitstreams: 1
04496.pdf: 1953193 bytes, checksum: 83f66485f1705e2b64ca387b0893c2cb (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
25 |
MAGNETIC, TRANSPORT, AND MAGNETOCALORIC PROPERTIES OF BORON DOPED Ni-Mn-In ALLOYSPandey, Sudip 01 August 2015 (has links)
The impact of B substitution in Ni50Mn35In15-xBx Heusler alloys with x = (0, 0.5, 0.75, 1, 1.1 1.5, and 2) on the structural, magnetic, transport, and parameters of magnetocaloric effect has been studied by means of room temperature XRD-diffraction, differential scanning calorimetry (DSC), and thermomagnetic measurements (in a magnetic field up to 5 T and temperature interval 5-400 K). Direct adiabatic temperature (ΔTAD) measurements have been carried out for an applied magnetic field change (ΔH) of 1.8 T. The partial substitution of In by B in Ni50Mn35In15-xBx Heusler alloys induced a non-linear temperature shift of the magnetostructural transition while Curie temperature (TC) was found to be nearly constant (TC ~ 320 K) for all compounds. The transition temperatures (T-x) phase diagram has been constructed for H = 0.005 T. The MCE parameters were found to be larger or comparable to parameters observed in other MCE materials, such as Ni50Mn34.8In14.2B and Ni50Mn35In14X (X=In, Al, and Ge) Heusler alloys. It has been demonstrated that the martensitic transformation temperature and the corresponding ∆SM can be tuned through a slight variation in composition of B in NiMnInB alloys. A magnetoresistance associated with martensitic transformation was found to be -60% for x = 0.75 at T = 240 K for a magnetic field change of 5 T. The maximum absolute value of ΔTAD = 2.5 K was observed at the magnetostructural transition for Ni50Mn35In14.5B0.5. The roles of the magnetic and structural changes on the transition temperatures are discussed.
|
26 |
PHASE TRANSITIONS AND MAGNETOCALORIC EFFECTS IN Ni1−xCrxMnGe1.05 AND GdNi2MnxAryal, Anil 01 August 2015 (has links)
The magnetocaloric and thermomagnetic properties of the Ni1-xCrxMnGe1.05 (for x = 0, 0.035, 0.070, 0.105, 0.110, 0.115, and 0.120) system have been studied by X-ray diffraction, differential scanning calorimetry (DSC), resistivity and magnetization measurements. A change in crystal structure from orthorhombic to hexagonal was observed in the XRD data with an increase in chromium concentrations. The values of the cell parameters and volume of the unit cell for hexagonal phase were determined. It was found that the partial substitution of Cr for Ni in Ni1-xCrxMnGe1.05 results in a first order magnetostructural transition from antiferromagnetic to ferromagnetic (FM) at TM of about132 K, 100 K, and 110 K for x= 0.105, 0.115, and 0.120, respectively. A FM to paramagnetic second order transition has been observed at TC around 200K. A magnetic entropy change of = 4.5 J/kg K, 5.6 J/Kg K, and 5.06 J/Kg K was observed in the vicinity of TC for x = 0.105, 0.115, and 0.120 respectively at ΔH = 5T. The values of the latent heat and corresponding total entropy changes have been determined from Differential Scanning Calorimetry (DSC) measurements. Magnetoresistance values of about -5% were measured near TC for x =0.105. The maximum value of refrigeration capacity (RC) and relative cooling power (RCP) was found to be 155 J/Kg and 175 J/Kg respectively for x = 0.120. A concentration-dependent (T-x) phase diagram of transition temperatures has been constructed using the magnetic and DSC data. The structural, magnetic and magnetocaloric properties of GdNi2Mnx system (for x = 0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.5) have been studied by x-ray diffraction and magnetization measurements. A mixture of the Laves phase C15 and a phase with rhombohedral structure PuNi3- type (space group R m) was observed in the XRD data. A second order magnetic phase transition from ferromagnetic (FM) to paramagnetic (PM) was found, characterized by a long-range exchange interaction as predicted by mean field theory. The maximum value of magnetic entropy changes, -∆SM, near TC for ∆H = 5T, was found to be 3.1 J/KgK, 2.8 J/KgK, 2.9 J/KgK, and 2.5 J/Kg K for x = 0.8, 1.2, 1.4, and 1.5 respectively. In spite of the low values of ΔSM, the RC and RCP value was found to be 176 J/Kg and 220 J/Kg for the GdNi2Mn0.8 compound, respectively.
|
27 |
Estudo do campo hiperfino magnetico no sitio do Ta-181 nas ligas de Heusler Cosub2ScSn, Cosub2ScGa e Cosub2HfSnATTILI, ROBERTA N. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:37:01Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:56:28Z (GMT). No. of bitstreams: 1
04496.pdf: 1953193 bytes, checksum: 83f66485f1705e2b64ca387b0893c2cb (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
28 |
Co₂MnSi Heusler alloy thin filmsSingh, Laura Jane January 2005 (has links)
This thesis investigates the growth of intermetallic compounds by co-sputtering from single elemental targets. The preliminary work involved constructing a sputtering set-up to grow abinary alloy (Sm-Co) and investigating how to control the composition spread that was obtained. Having achieved this, a larger sputtering flange was built up to grow the ternary Heusler alloy, Co₂MnSi. Co₂MnSi has been predicted to be a half-metallic ferromagnet, which means that there is an energy gap in the minority spin band at the Fermi energy. This leads to 100% spin polarised conduction electrons, which would enable ideal spin-device performance to be obtained. Co₂MnSi is particularly promising because it is predicted to have a large energy gap in the minority band of ~0.4 eV and has the highest Curie temperature among the known Heuslers of 985 K. Initially, Co₂MnSi was grown on a-plane sapphire and stoichiometric films were single phase and highly (110) textured, without the use of a seed layer. They exhibited the bulk value of the saturation magnetisation, Ms and films grown at the highest deposition temperature (715 K) showed the lowest resistivity (47 μΩcm at 4.2 K) and the lowest room temperature coercivity (18 Oe). The spin polarisation of the transport current, Pt of a 400 nm film grown at this deposition temperature was 54%, consistent with measurements on bulk single crystals. Ms decreased with decreasing film thickness indicating a graded disorder. By growing on GaAs (001), which has a similar lattice parameter to Co₂MnSi it was expected that this disordered region would be confined to the first few atomic layers. However, this was not the case because interfacial reactions resulted in the formation of an epitaxial Mn-As region, and a thin interfacial layer that was Co-Ga rich. This prevented the lattice matching of the Co₂MnSi to the GaAs(001) hence hindering epitaxial growth of the Heusler. The reaction zone also meant that films exhibited a Ms slightly below the bulk value. The expected fourfold anisotropy was not obtained for this cubic material, which is most likely due to the anisotropy of the reconstructed GaAs surface. Inspite of this anomalous behaviour, Pt was 55%, similar to the result obtained on sapphire, indicating that either Pt is independent of orientation or that the Heusler surface reconstructs in the same way. Films showed some improved properties to films grown on a-plane sapphire, indicating the potential of growing on this technologically important substrate. With this in mind, pseudo spin valves involving Co₂MnSi as one of the ferromagnetic electrodes were fabricated in both the CIP and CPP configurations. Clear low-field spin-valve contributions were observed at 15 K but the MR values are much lower than that expected from a PSV with a predicted 100% spin polarised electrode.
|
29 |
EXPLORING THE STRUCTURAL, ELECTRONIC, AND MAGNETORESPONSIVE PROPERTIES OF NOVEL MAGNETIC MATERIALS IN BULK, RIBBONS, AND THIN FILMSPandey, Sudip 01 May 2019 (has links) (PDF)
The structural, electronic, magnetic, magnetocaloric, and transport properties of doped Ni-Mn-(In, Sn) based Heusler alloys were studied using neutron diffraction, x-ray diffraction (XRD), differential scanning calorimetry (DSC), high field magnetization, specific heat, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and hydrostatic pressure measurements. The adiabatic temperature change (∆Tad) by a direct method and through thermomagnetic measurements in magnetic fields up to 14 T has been performed for these alloys. Also the mixed effect of pressure and magnetic field on the transition temperature of these alloys are discussed. In order to develop new magnetocaloric and multifunctional materials, the synthesis and characterization of Heusler alloys in reduced dimensions, i.e., ribbons and thin films has been performed. In addition, the structural, magnetic, and magnetocaloric properties of Ni-based binary alloys were investigated, including saturation magnetization and Curie temperature (TC) for the possible applications in self controlled magnetic hyperthermia applications.
|
30 |
Chemical and Magnetic Order in the Heusler Alloy Ni2Mn0.8V0.2Sn By Neutron DiffractionLocke, Kenneth 06 1900 (has links)
<p> Neutron diffraction techniques have been used to determine the chemical and magnetic order in a single crystal of the Heusler alloy Ni2Mn0.8v0.2sn. This material orders in the Heusler L21 structure and is ferromagnetic. Nuclear Bragg scattering intensity ratios have been measured at 298 K and compared with nuclear structure factor calculations based on a model of the crystal structure. This comparison is used to determine chemical disorder. Magnetic Bragg scattering intensity ratios have been measured at 117 K. These ratios, along with bulk magnetization measurements, are used to determine the spatial distribution of the magnetic moment. The crystal is found to have the L21 structure with possibly 5% or so Ni-Sn disorder. Nearly all of the magnetic moment, which is 3.19 ± .03 μ8/mol, is found to exist on the Mn-V sites. The rest is present on the Sn atoms. The values 3.74 ± .10 μ8/Mn atom and .21 ± .08 μ8/Sn atom result from assuming the V atoms carry no moment. </p> / Thesis / Master of Science (MSc)
|
Page generated in 0.0332 seconds