Spelling suggestions: "subject:"hidden subgroup deproblem (HSP)"" "subject:"hidden subgroup 3dproblem (HSP)""
1 |
Quantum Algorithm for the Non Abelian Hidden Subgroup Problem / Algoritmos Quânticos para o Problema do Subgrupo Oculto não AbelianoCarlos Magno Martins Cosme 13 March 2008 (has links)
We present an efficient quantum algorithm for the Hidden Subgroup Problem (HSP) on the semidirect product of the cyclic groups and , where is any odd prime number, and are positives integers and the homomorphism which defines the group is given by the root such that . As a consequence we can solve efficiently de HSP on the semidirect product of the groups by , where has a special prime factorization. / Neste trabalho apresentamos um algoritmo quântico eficiente para o Problema do Subgrupos Oculto (PSO) no produto semidireto dos grupos cíclicos e , onde é qualquer número primo ímpar, e são inteiros positivos e o homomorfismo que define o grupo é dado por uma raiz para a qual . Como conseqüência, podemos resolver eficientemente o PSO também no produto semidireto dos grupos por , onde o inteiro possui uma especial fatoração prima.
|
2 |
Algoritmos quânticos para o problema do subgrupo oculto não Abeliano / Quantum Algorithm for the Non Abelian Hidden Subgroup ProblemCosme, Carlos Magno Martins 13 March 2008 (has links)
Made available in DSpace on 2015-03-04T18:50:57Z (GMT). No. of bitstreams: 1
Tese-Carlos-Magno1.pdf: 616333 bytes, checksum: 65e51c95902afd18d11a1d7366653fc0 (MD5)
Previous issue date: 2008-03-13 / Conselho Nacional de Desenvolvimento Cientifico e Tecnologico / We present an efficient quantum algorithm for the Hidden Subgroup Problem (HSP) on the semidirect product of the cyclic groups and , where is any odd prime number, and are positives integers and the homomorphism which defines the group is given by the root such that . As a consequence we can solve efficiently de HSP on the semidirect product of the groups by , where has a special prime factorization. / Neste trabalho apresentamos um algoritmo quântico eficiente para o Problema do Subgrupos Oculto (PSO) no produto semidireto dos grupos cíclicos e , onde é qualquer número primo ímpar, e são inteiros positivos e o homomorfismo que define o grupo é dado por uma raiz para a qual . Como conseqüência, podemos resolver eficientemente o PSO também no produto semidireto dos grupos por , onde o inteiro possui uma especial fatoração prima.
|
Page generated in 0.0579 seconds