• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudos sobre a hidratação de detergentes / Studies on the hydration of detergents

Farah, Joao Pedro Simon 21 March 1988 (has links)
A presente Tese tem por objetivo estudar alguns aspectos das interações água-detergente que são importantes para o entendimento das propriedades fisico-químicas da própria micela. além das interações que ocorrem na pseudo-fase micelar. Estas interações foram estudadas utilizando-se duas técnicas: RMN de 1H, para avaliar o efeito de micelas aquosas iônicas, zwitteriônicas e não-iônicas sobre a estrutura da água; e o estudo cinético da hidrólise espontânea de um éster do ácido carbônico, para determinar a reatividade cinética desta água além de, possivelmente, esclarecer alguns aspectos da questão da penetração da água na micela. Foi determinado o efeito da concentração do detergente e a presença de deutério no solvente sobre os deslocamentos químicos dos prótons da água. Foi usada a seguinte série de detergentes: dodecilsulfato de sódio (SOS, aniônico), dodecilbenzenossulfonato de sódio (SDBS, aniônico), perfluoroctanoato de sódio (SPFO, aniônico), cloreto de cetiltrimetilamônio (CTACl, catiônico), éter octilfenil(9,5)polioxietilênico (TX-100) e dodecildimetilamônio-3-propanossulfonato (DDAPS, zwitteriônico). O deslocamento químico dos prótons da água. depende linearmente da concentração de detergente e os coeficientes angulares das retas são sinsíveis à concentração de deutério no solvente. A partir destas correlações foram calculados os fatores de fracionamneto deutério/prótio,φ cujas magnitudes dão uma idéia quantitativa do efeito do detergente sobre a estrutura da água. Para averiguar a origem micelar do fracionamento observado, foram determinados também os fatores de fracionamento para compostos modelos. Estes são constituídos de cadeias carbônicas curtas que não formam agregados mas que possuem os mesmos grupos hidrofílicos dos detergentes. Foram usados os seguintes compostos como modelos: butilsulfato de sódio (modelo para SDS), p-tolouenossulfonato de sódio (modelo para SDBS), perfluorobutirato de sódio (modelo para SPFO) e brometo de butiltrimetilamônio (modelo para CTACl). Os resultados obtidos mostram que estes compostos perturbam pouco a estrutura água e são diminuidores da sua estrutura. Os detergentes, com a excessão de DDAPS e TX-100, claramente aumentam a estrutura da água devido a efeitos eletrorrestritivos. Interações inter e intramoleculares entre os íons do DDAPS resultam numa neutralização interna das cargas e explicam o seu pequeno efeito (aumento) sobre a estrutura do solvente. Nao é fácil oferecer uma explicação simples para a diminuição da estrutura da água na presença de TX-100, pois existe a interferência de fatores cujos efeitos sobre o fracionamento não podem ainda ser avaliados. Entre estes destacamos o enrolamento das cadeias oxietilênicas do detergente. a presença de água fisicamente presa entre estas cadeias e o fato de que a distruibição das moléculas de água entre as unidades de oxietileno não é homogênea. Foram determinadas as constantes de velocidade, os parâmetros de ativação e o efeito isotópico cinético do solvente para a hidrólise independente do pH de carbonato de bis(2,4-dinitrofenila) , na presença de SDS, CTABr, CTACl, TX-100 de cetildimetilamônio-3-propanossulfonato (HDAPS) . O efeito micelar foi analisado em termos da transferência do éster do seio aquoso para água micelar, e do efeito salino acoplado a fatores eletrostáticos das micelas iônicas. Como modelo para o efeito da transferência do meio, a reação foi estudada em misturas de água e acetonitrila. O efeito salino foi avaliado estudando a reação em presença de alguns dos compostos-modelo acima mencionados. Houve mudanças marcantes na entropia e na entalpia de ativação da reação somente em presença de grandes quantidades de acetonitrila no solvente (fração molar de 0,55 a 0,90). O efeito salino foi pequeno. Todos os detergentes, especialmente o SDS, diminuiram velocidade da reação devido a fatores entálpicos desfavoráveis. Para ter uma idéia do sítio da solubilização do éster nas micelas usadas, estudamos o efeito de acetato e decanoato de p-nitrofenila (compostos usados como modelo para CDNF), sobre os deslocamentos químicos dos grupos de cada detergente. Os resultados mostram que o sítio de solubilização destes ésteres não está predominantemente na região da superfície da micela. Os ésteres movimentam-se rapidamente (em relação à escala do tempo da RMN), em todo volume da micela. Efetuamos um cálculo simples mostrando que a penetração da água até os primeiros dois grupos metilênicos pode dar origem a um volume hidratado da micela de mais de 50%. Uma consideração dos parâmetros de ativação, dos resultados de RMN de 1H e do significado do cálculo do volume micelar efetuado, nos levou a concluir que nossos dados cinéticos podem ser explicados sem a necessidade de assumir uma micela extensivamente hidratada, como por exemplo aquela proposta pelo modelo de aglomeração poros (porous cluster model). / Study of micelle-water interactions is relevant to the physical chemistry of the micelle itself, and for a better understanding of the interactions occuring therein. In the present thesis two aspects of these interactions were studied: the effect of the organized assembly on the structure of water at the micellar interface, and on the kinetic reactivity of water as probed by examining the pH-independent (spontaneous) hydrolysis of a carbonate ester. The effect of the following surfactants on the structure of water was studied: sodium dodecylsulphate (SDS, anionic) sodium dodecylbenzene sulphonate (SDBS, anionic), sodium perfluorooctanoate (SPFO, anionic), cetyltrimethylammonium chloride (CTACl, cationic), polyoxyethylene (9.5) octylphenyl ether (TX-100, nonionic), dodecyldimethylammonio-3-propane sulphonate (DDAPS, zwitterionic). The dependence of the chemical shift of the water protons on the surfactant concentration, and on the deuterium content of the solvent was used to calculate the deuterium/protium fractionation factor, φ. The magnitude of the latter (relative to unity, the fractionation factor for bulk water) gives a quantitative idea of the solvent structure perturbation by the micellar pseudophase. In order to ascertain that the observed D/H fractionation is micelle-induced, the fractionation factors for model compounds were also determined. These were short-chain, i.e., non-aggregating compounds bearing the same head-groups as the surfactants. The following model compounds were used: sodium butylsulphate (model for SDS), sodium p-toluenesulphonate (model for SDBS), sodium perfluorobutyrate (model for SPFO) and butyltrimethylammonium bromide (model for CTACl). The following conclusions were drawn from the determined fractionation factors: whereas the short-chain compounds perturb the structure of water only slightly, and are usually water structure breakers, the presence of the micelles clearly enhances the structure of the solvent. Exceptions are zwitterionic DDAPS (marginal structure enhancement) and nonionic TX-100 (water structure decrease). The behavior of the zwitterionic surfactant was explained based on the negligible electrostrictive effect of the micelle due to inter and intramolecular interactions between the head-ions. A simple rationale for the case of TX-100 is not easy because of can complicate such interpretation: the followino factors that coiling of the oxyethylene chains, physical trapping of water between the chains, noneven distribution of the water molecules along the oxyethylene chains. Rate constants, activation parameters, solvent kinetic isotope effect were determined for the pH-independent hydrolysis of 2,4-dintrophenyl carbonate in the presence of SDS, CTABr, CTACl. TX-100 and cetyldimethylammonio-3-propane sulphonate (HDAPS). The micellar effect was analyzed in terms of a transfer Effect, a salt and an electrostatic effect. The first refers to the transfer of the ester form bulk water to \"micellar\" water, and was mimicked by studying the reaction in water-acetonitrile mixtures. Salt effect was evaluated by conducting the hydrolysis in the presence some of the above mentioned short-chain compounds. For the reaction in aqueous acetonitrile the entropy and enthalpy of activation showed sizable changes only at high mole fraction (0.55 to 0.90) of the organic solvent. Salt effect was negligible. The tested detergents, specially SDS, slow the reaction rate due to unfavorable enthalpy. The solubilization site of the ester in the micelles was assesed by 1H NMR. using p-nitrophenyl acetate and decanoate as models. This study showed that the ester in the micelles is not localized at, or very near, to the micelle/water interface, but is rapidly moving (on the NMR time-scale) all over the micellar volume. Analysis of the obtained activation parameters, coupled with the 1H NMR data, and with the result of simple geometric calculation led us to conclude that deep water penetration in the micelle (e.g ., according to the porous cluster model) is not essential to rationalize our data.
2

Estudos sobre a hidratação de detergentes / Studies on the hydration of detergents

Joao Pedro Simon Farah 21 March 1988 (has links)
A presente Tese tem por objetivo estudar alguns aspectos das interações água-detergente que são importantes para o entendimento das propriedades fisico-químicas da própria micela. além das interações que ocorrem na pseudo-fase micelar. Estas interações foram estudadas utilizando-se duas técnicas: RMN de 1H, para avaliar o efeito de micelas aquosas iônicas, zwitteriônicas e não-iônicas sobre a estrutura da água; e o estudo cinético da hidrólise espontânea de um éster do ácido carbônico, para determinar a reatividade cinética desta água além de, possivelmente, esclarecer alguns aspectos da questão da penetração da água na micela. Foi determinado o efeito da concentração do detergente e a presença de deutério no solvente sobre os deslocamentos químicos dos prótons da água. Foi usada a seguinte série de detergentes: dodecilsulfato de sódio (SOS, aniônico), dodecilbenzenossulfonato de sódio (SDBS, aniônico), perfluoroctanoato de sódio (SPFO, aniônico), cloreto de cetiltrimetilamônio (CTACl, catiônico), éter octilfenil(9,5)polioxietilênico (TX-100) e dodecildimetilamônio-3-propanossulfonato (DDAPS, zwitteriônico). O deslocamento químico dos prótons da água. depende linearmente da concentração de detergente e os coeficientes angulares das retas são sinsíveis à concentração de deutério no solvente. A partir destas correlações foram calculados os fatores de fracionamneto deutério/prótio,φ cujas magnitudes dão uma idéia quantitativa do efeito do detergente sobre a estrutura da água. Para averiguar a origem micelar do fracionamento observado, foram determinados também os fatores de fracionamento para compostos modelos. Estes são constituídos de cadeias carbônicas curtas que não formam agregados mas que possuem os mesmos grupos hidrofílicos dos detergentes. Foram usados os seguintes compostos como modelos: butilsulfato de sódio (modelo para SDS), p-tolouenossulfonato de sódio (modelo para SDBS), perfluorobutirato de sódio (modelo para SPFO) e brometo de butiltrimetilamônio (modelo para CTACl). Os resultados obtidos mostram que estes compostos perturbam pouco a estrutura água e são diminuidores da sua estrutura. Os detergentes, com a excessão de DDAPS e TX-100, claramente aumentam a estrutura da água devido a efeitos eletrorrestritivos. Interações inter e intramoleculares entre os íons do DDAPS resultam numa neutralização interna das cargas e explicam o seu pequeno efeito (aumento) sobre a estrutura do solvente. Nao é fácil oferecer uma explicação simples para a diminuição da estrutura da água na presença de TX-100, pois existe a interferência de fatores cujos efeitos sobre o fracionamento não podem ainda ser avaliados. Entre estes destacamos o enrolamento das cadeias oxietilênicas do detergente. a presença de água fisicamente presa entre estas cadeias e o fato de que a distruibição das moléculas de água entre as unidades de oxietileno não é homogênea. Foram determinadas as constantes de velocidade, os parâmetros de ativação e o efeito isotópico cinético do solvente para a hidrólise independente do pH de carbonato de bis(2,4-dinitrofenila) , na presença de SDS, CTABr, CTACl, TX-100 de cetildimetilamônio-3-propanossulfonato (HDAPS) . O efeito micelar foi analisado em termos da transferência do éster do seio aquoso para água micelar, e do efeito salino acoplado a fatores eletrostáticos das micelas iônicas. Como modelo para o efeito da transferência do meio, a reação foi estudada em misturas de água e acetonitrila. O efeito salino foi avaliado estudando a reação em presença de alguns dos compostos-modelo acima mencionados. Houve mudanças marcantes na entropia e na entalpia de ativação da reação somente em presença de grandes quantidades de acetonitrila no solvente (fração molar de 0,55 a 0,90). O efeito salino foi pequeno. Todos os detergentes, especialmente o SDS, diminuiram velocidade da reação devido a fatores entálpicos desfavoráveis. Para ter uma idéia do sítio da solubilização do éster nas micelas usadas, estudamos o efeito de acetato e decanoato de p-nitrofenila (compostos usados como modelo para CDNF), sobre os deslocamentos químicos dos grupos de cada detergente. Os resultados mostram que o sítio de solubilização destes ésteres não está predominantemente na região da superfície da micela. Os ésteres movimentam-se rapidamente (em relação à escala do tempo da RMN), em todo volume da micela. Efetuamos um cálculo simples mostrando que a penetração da água até os primeiros dois grupos metilênicos pode dar origem a um volume hidratado da micela de mais de 50%. Uma consideração dos parâmetros de ativação, dos resultados de RMN de 1H e do significado do cálculo do volume micelar efetuado, nos levou a concluir que nossos dados cinéticos podem ser explicados sem a necessidade de assumir uma micela extensivamente hidratada, como por exemplo aquela proposta pelo modelo de aglomeração poros (porous cluster model). / Study of micelle-water interactions is relevant to the physical chemistry of the micelle itself, and for a better understanding of the interactions occuring therein. In the present thesis two aspects of these interactions were studied: the effect of the organized assembly on the structure of water at the micellar interface, and on the kinetic reactivity of water as probed by examining the pH-independent (spontaneous) hydrolysis of a carbonate ester. The effect of the following surfactants on the structure of water was studied: sodium dodecylsulphate (SDS, anionic) sodium dodecylbenzene sulphonate (SDBS, anionic), sodium perfluorooctanoate (SPFO, anionic), cetyltrimethylammonium chloride (CTACl, cationic), polyoxyethylene (9.5) octylphenyl ether (TX-100, nonionic), dodecyldimethylammonio-3-propane sulphonate (DDAPS, zwitterionic). The dependence of the chemical shift of the water protons on the surfactant concentration, and on the deuterium content of the solvent was used to calculate the deuterium/protium fractionation factor, φ. The magnitude of the latter (relative to unity, the fractionation factor for bulk water) gives a quantitative idea of the solvent structure perturbation by the micellar pseudophase. In order to ascertain that the observed D/H fractionation is micelle-induced, the fractionation factors for model compounds were also determined. These were short-chain, i.e., non-aggregating compounds bearing the same head-groups as the surfactants. The following model compounds were used: sodium butylsulphate (model for SDS), sodium p-toluenesulphonate (model for SDBS), sodium perfluorobutyrate (model for SPFO) and butyltrimethylammonium bromide (model for CTACl). The following conclusions were drawn from the determined fractionation factors: whereas the short-chain compounds perturb the structure of water only slightly, and are usually water structure breakers, the presence of the micelles clearly enhances the structure of the solvent. Exceptions are zwitterionic DDAPS (marginal structure enhancement) and nonionic TX-100 (water structure decrease). The behavior of the zwitterionic surfactant was explained based on the negligible electrostrictive effect of the micelle due to inter and intramolecular interactions between the head-ions. A simple rationale for the case of TX-100 is not easy because of can complicate such interpretation: the followino factors that coiling of the oxyethylene chains, physical trapping of water between the chains, noneven distribution of the water molecules along the oxyethylene chains. Rate constants, activation parameters, solvent kinetic isotope effect were determined for the pH-independent hydrolysis of 2,4-dintrophenyl carbonate in the presence of SDS, CTABr, CTACl. TX-100 and cetyldimethylammonio-3-propane sulphonate (HDAPS). The micellar effect was analyzed in terms of a transfer Effect, a salt and an electrostatic effect. The first refers to the transfer of the ester form bulk water to \"micellar\" water, and was mimicked by studying the reaction in water-acetonitrile mixtures. Salt effect was evaluated by conducting the hydrolysis in the presence some of the above mentioned short-chain compounds. For the reaction in aqueous acetonitrile the entropy and enthalpy of activation showed sizable changes only at high mole fraction (0.55 to 0.90) of the organic solvent. Salt effect was negligible. The tested detergents, specially SDS, slow the reaction rate due to unfavorable enthalpy. The solubilization site of the ester in the micelles was assesed by 1H NMR. using p-nitrophenyl acetate and decanoate as models. This study showed that the ester in the micelles is not localized at, or very near, to the micelle/water interface, but is rapidly moving (on the NMR time-scale) all over the micellar volume. Analysis of the obtained activation parameters, coupled with the 1H NMR data, and with the result of simple geometric calculation led us to conclude that deep water penetration in the micelle (e.g ., according to the porous cluster model) is not essential to rationalize our data.

Page generated in 0.0964 seconds