• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 16
  • 13
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Parâmetros de resistência do solo para dimensionamento de sistemas de drenagem em estradas não pavimentadas / Parameters of soil resistance for drainage systems dimensioning in non-paved roads

OLIVEIRA, João Fonseca de 21 February 2008 (has links)
Made available in DSpace on 2014-07-29T16:24:14Z (GMT). No. of bitstreams: 1 JOaO FONSECA DE OLIVEIRA.pdf: 1294832 bytes, checksum: 022b50e9a3fc392dd2bef5f7fcc5d895 (MD5) Previous issue date: 2008-02-21 / This work was developed mainly aiming the determination of the erodibility and the critical shear stress in non-paved roads, focusing on the reduction of the eminent risks of occurring erosion in these roads, based upon a drainage system dimensioning using local resistance values. In order to achieve these values a yield simulator was built, which model consists of an improved version of the equipment proposed by Griebeler (2005), utilized in superficial yield testing directly at the drainage channel of the road and in collecting the eroded material. The simulator was installed in soils of roads of Goiânia (E1), Baliza (E2), Doverlândia (E3) and Morrinhos (E4, E5 e E6) , all of which are in the state of Goiás. The tests were performed with three repetitions for each passage of the vicinal roads. For each test were utilized five channels with different crescent volumetric flow rates, in a way to simulate the ascending curve of a yielding hydrogram, where each channel was collected in a proper recipient, for later determination of the amount of eroded material (debris). Samples were also collected from non-deformed soil, utilizing an Uhland sampler, aiming to determine the density of the soil. Furthermore, the declivity of the road and samples for characterizing the granulometric curves and determining the Atterberg limits were also measured and collected. The results found showed erodibility (g.cm-2.min- 1.Pa-1) and critical shear stress values respectively of 0.0036 and 2.00 for E1; 0.0099 and 2.06 for E2; 0.0582 and 3.93 for E3; 0.0073 and 3.78 for E4; 0.0075 and 4.87 for E5; and, 0.0054 and 3.74 for E6. These values appear highly elevated for the condition of roads, indicating high erosion risk, a fact that can be observed from the conservation state in which they can be found. The soils of the roads were classified as Sandy loam (E1), Sandy (E2), Clay loam (E3), Sandy clay (E4), Sandy loam (E5) and Sandy clay loam (E6). The classification of the soils of the roads, with little clay material, which works as a cementer, helps explain the elevated values obtained for the erodibility and critical shear stress. The soil density values (g.cm-3) observed were, respectively for roads E1 to E6, 1.58; 1.64; 1.53; 1.41; 1.63 and 1.60. Through the simulation performed using the Roads Griebeler (2005) software and utilizing the values observed in the field, the fact that road E1 obtained the greatest space management, mainly due to its lower erodibility. However, for the remaining roads, the software pointed out the need to build drains nearby, further indicating the need to make alterations in their drainage channels as well as their consisting material, so that their erodibility would be reduced. The composition of the material can be made through the mixture of a greater quantity of cementing material, such as clayey soil, to the material of the road, enhancing the soil s resistance to the erosive process. The model has proven to be highly sensitive to the alterations in the erodibility of the soil and in the declivity of the road. / Este trabalho foi desenvolvido tendo como objetivo principal a determinação da erodibilidade e da tensão crítica de cisalhamento em estradas não pavimentadas, visando a redução dos riscos de ocorrência de erosão nestas estradas com base em dimensionamentos de sistemas de drenagem através de valores locais de resistência. Para a obtenção destes valores foi construído um simulador de escoamento, cujo modelo consiste em um aperfeiçoamento do equipamento proposto por Griebeler et al. (2005), utilizado para testes de escoamento superficial diretamente no canal de drenagem da estrada e para a coleta de material erodido. O simulador foi instalado em solos de estradas de Goiânia (E1), Baliza (E2), Doverlândia (E3) e Morrinhos (E4, E5 e E6), todas no estado de Goiás. Os testes foram realizados com três repetições para cada canal de estrada. Em cada teste foram utilizadas cinco vazões diferentes e crescentes, de modo a simular a curva ascendente de um hidrograma de escoamento, sendo cada vazão coletada em um recipiente próprio, para posterior determinação da quantidade de material erodido. Foram coletadas amostras de solo indeformadas, utilizando um amostrador Uhland, visando à determinação da densidade do solo. Coletou-se também, amostras para a caracterização das curvas granulométricas e determinação dos limites de Atterberg e determinou-se, ainda, a declividade da estrada. Os resultados encontrados mostraram valores de erodibilidade (g.cm-2.min-1.Pa-1) e de tensão crítica de cisalhamento (Pa) respectivamente de 0,0036 e 2,00 para a E1; 0,0099 e 2,06 para E2; 0,0582 e 3,93 para E3; 0,0073 e 3,78 para E4; 0,0075 e 4,87 para E5; e, 0,0054 e 3,74 para E6. Estes valores mostram-se bastante elevados para a condição de estradas, indicando alto risco de erosão, fato este observado pelo estado de conservação destas em campo. Os solos das estradas foram classificados como Franco arenoso (E1), Arenoso (E2), Franco argiloso (E3), Argilo arenoso (E4), Franco arenoso (E5) e Franco argilo arenoso (E6). A classificação dos solos das estradas, com pouco material argiloso, que funciona como cimentante, ajuda a explicar os elevados valores obtidos para a erodibilidade e tensão crítica de cisalhamento. Os valores de densidade (g.cm-3) do solo observados foram de 1,58; 1,64; 1,53; 1,41; 1,63 e 1,60, respectivamente para as estradas de E1 a E6. Pela simulação realizada com o software Estradas (Griebeler et al., 2005), utilizando os valores observados em campo, pode-se observar que o maior espaçamento foi obtido para a estrada E1, em vista, principalmente, da sua menor erodibilidade. Nas demais estradas o software indicou a necessidade de desaguadouros bastante próximos indicando a necessidade de alterações nos canais de drenagem das estradas bem como no seu material constituinte, de modo que sua erodibilidade seja reduzida. A composição do material pode ser feita pela mistura de uma maior quantidade de material cimentante, como solo argiloso, ao material da estrada, aumentando a resistência do solo ao processo erosivo. O modelo mostrou-se bastante sensível às alterações na erodibilidade do solo e na declividade da estrada.

Page generated in 0.0621 seconds