Spelling suggestions: "subject:"higgs mass"" "subject:"biggs mass""
1 |
A precise Higgs mass measurement at the ILC and test beam data analyses with CALICERuan, M. 27 October 2008 (has links) (PDF)
En utilisant les outils de Monte Carlo et les données de test en faisceau, la performance d'un détecteur au futur collisionneur linéaire international a été étudiée. La contribution de cette thèse porte sur deux parties; d'une part sur une mesure de précision de la masse du boson Higgs et de la section efficace de la production avec le processus e^+e^- → HZ où le boson Z se désintègre en paire μ^+μ^− et d'autre part sur une analyse des données de test en faisceau de la collaboration CALICE (CAlorimeter for Linear Collider Experiment). Pour un Higgs de 120GeV, nous avons obtenu une précision de 38.4MeV sur la masse de Higgs et de 5% sur la section efficace en choisissant une énergie dans le centre de masse optimale de 230 GeV et avec une luminosité intégrée de 500 fb^-1. Ces résultats sont indépendants d'un modèle de Higgs donné puisque aucune information sur la désintégration du Higgs n'a été utilisée dans l'analyse. Si on suppose que le Higgs est celui du modèle standard ou il se désintègre principalement en particules invisibles, la précision peut être améliorée de façon significative (29MeV pour la masse et 4% pour la section efficace). Pour l'analyse des données de test en faisceau, mon travail concerne deux aspects. Premièrement une vérification sur la qualité des données en temps quasi réel et deuxièmement une mesure précise sur la résolution angulaire d'une gerbe électromagnétique dans le calorimètre prototype utilisé dans le test en faisceau. Le but pour la vérification de la qualité des données est de détecter des problèmes éventuels sur l'ensemble du détecteur y compris l'électronique, le système de haute tension et d'acquisition, et de classer des différentes données pour faciliter les analyses offlines. Pour déterminer la résolution angulaire du calorimètre électromagnétique, nous avons développé un algorithme qui est basée uniquement sur le dépôt d'énergie dans différentes cellules produites par le faisceau d'électrons sans utilisant l'information du détecteur de trace devant le calorimètre. Celle-ci est importante pour pouvoir identifier le composant neutre d'un jet. Nos résultats montrent que la dépendance de la résolution angulaire en énergie du faisceau est similaire à celle de la résolution en énergie et peut être décrite par (74/√(E/GeV)+ 8.7)mrad.
|
2 |
Measurement of the mass and natural width of the Higgs boson in the H to ZZ to 4l decay channel with the ATLAS detectorSpearman, William R 21 October 2014 (has links)
This thesis presents a measurement of the mass, natural width, and signal strength, defined as the yield normalized to the Standard Model prediction, of the Higgs boson in the \(H \rightarrow ZZ^{(*)} \rightarrow 4l\) decay channel using an approach which utilizes event-by-event detector response information. The measurement is performed on p-p collision data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The data corresponds to an integrated luminosity of \(25 fb^{-1}\) with center-of-mass energies of 7 TeV and 8 TeV. The measured mass of the Higgs boson is \(m_H = 124.57_{-0.43}^{+0.48} GeV\). The signal strength was estimated at \(\mu = 1.76_{-0.37}^{+0.46}\). Finally, the natural width of the Higgs was determined to be < 2.6 GeV with 95% confidence. The event-by-event approach used in this analysis involves the parameterization of the behavior of single leptons in the ATLAS detector and the convolution of a mass response with the Higgs truth distribution to derive the reconstruction level signal model. / Physics
|
3 |
O Bóson de Higgs no contexto do modelo 331 supersimétrico reduzidoFerreira Júnior, José Geilson 27 April 2016 (has links)
Submitted by Vasti Diniz (vastijpa@hotmail.com) on 2017-09-13T13:17:38Z
No. of bitstreams: 1
arquivototal.pdf: 1153583 bytes, checksum: 90e000230d130e23facb89bab720b47a (MD5) / Made available in DSpace on 2017-09-13T13:17:38Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1153583 bytes, checksum: 90e000230d130e23facb89bab720b47a (MD5)
Previous issue date: 2016-04-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we built a supersymmetric version of the recently proposed reduced
minimal 3-3-1 model using the superfield formalism. We study the mass spectrum of
all particles emphasizing on the mass spectrum of the lightest scalars of the model.
We show that Higgs mass of 125 GeV requires substantial radiative corrections.
To do this, stops do not need develop a large mixing and must have mass around
TeV. Moreover, some soft SUSY breaking terms may lie at the electroweak scale,
which alleviates some tension concerning fine tuning of the related parameters. The
lightest doubly charged scalar may have mass around few hundreds of GeV, which
can be probed at the LHC, while the remaining scalars of the model have masses
at TeV scale. / A presente tese busca construir a versão supersimétrica do modelo 3-3-1 mínimo
reduzido, proposto recentemente, utilizando o formalismo de supercampos. Desenvolvemos
o espectro de massa de todas as partículas, dando ênfase ao espectro
de massa dos escalares mais leves do modelo. Mostramos que uma massa de 125
GeV para o bóson de Higgs requer correções radiativas substanciais. Para tal, os
superparceiros do quark top não necessitam desenvolver uma grande mistura e
devem ter massa em torno dos TeV. Além disso, alguns termos de quebra soft de
supersimetria podem estar na escala eletrofraca, o que alivia um pouco o ajuste
fino destes parâmetros. O mais leve escalar duplamente carregado pode ter massa
em torno de algumas centenas de GeV, podendo ser sondado no LHC, enquanto os
escalares restantes do modelo têm massas em escala TeV.
|
4 |
Construction of the Higgs Mechanism and the Lee-Quigg-Thacker-boundWilhelm, Franz January 2019 (has links)
In this paper the higgs mechanism for the standard model is constructed in steps. First by considering spontaneous breaking of discrete and continuous global gauge invariance. Then spontaneous breaking of local gauge invariance. These results are then used to construct the electroweak part of the standard model through application of the higgs mechanism. Finally, the LQT-upper bound of 1 TeV for the higgs mass is calculated through unitarity constraints. / I denna artikel konstrueras higgsmekanismen i standardmodellen stegvis. Först genom att beakta spontant symmetribrott av diskreta samt kontinuerliga globala gaugeinvarianser. Därefter spontant symmetribrott av lokala gaugeinvarianser. Dessa resultat används sedan för att konstruera den elektrosvaga delen av standardmodellen genom tillämpning av higgsmekanismen. Slutligen beräknas en övre gräns för higgsmassan, den så kallade LQT-gränsen, via unitaritetsbegränsingar.
|
5 |
Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and BeyondBaas, Alessandra Edda 01 January 2010 (has links) (PDF)
The Standard Model of particle physics is the best existing theory for describing the interactions between elementary particles. Even though the Standard Model has been confirmed in many experiments, there remain unanswered questions. One of the main questions is how fermions and most gauge bosons get masses; the Standard Model begins with them as massless. The Higgs effect is a mechanism to explain how fermions and several gauge bosons do get masses in the Standard Model. The corresponding Higgs boson is the only particle that has not yet been detected.
This Thesis gives a complete review of the Higgs effect and Higgs related topics. It starts with theoretical basics and develops the theory of the Higgs effect within the electroweak section of the Standard Model. The discussion then considers the topics of radiative corrections and the effect of the Higgs boson as a virtual particle, concentrating on the example of the rho-parameter. In addition, experimental and theoretical constraints for the Higgs mass M_H will be given with special emphasis on the Hierarchy Problem which leads to a physically unacceptable Higgs mass when using high energies (of the Grand Unification scale) as a cutoff for the radiative corrections. Furthermore experimental attempts to detect the Higgs boson at LEP2, TEVATRON and LHC will be described and the different decay channels discussed. Finally, alternative theoretical models beyond the Standard Model are motivated and presented, such as supersymmetry, a vectorlike Standard Model and a possible relation between the Higgs and the Inflaton of Cosmology.
|
6 |
Aspects de théories supersymétriques unifiées en dimension supplémentaires / Aspects of extra dimensional supersymmetric unified theoriesFichet, Sylvain 23 September 2011 (has links)
Bien que l'on ne sache pas (encore) quel phénomène unitarise la diffusion WLWL à l'échelle du TeV, les données indirecte actuelles favorise le boson de Higgs. Etant donné que cette particule scalaire pourrait être aussi lourde que la masse de Planck, comment peut-on expliquer sa légèreté ? La supersymmétrie (SUSY), brisée à l'échelle du TeV, peut effectuer cette stabilisation, et permettre du même coup l'existence de Théories de Grande Unifications (GUTs). Ces SUSY GUTs réalisées dans une dimension supplémentaire compactifiée, peuvent être particulièrement simples. De plus, elles peuvent être prises comme limite basse énergie d'une théorie de cordes. Cette thèse est consacrée à l'étude de tels modèles de SUSY GUTs. Nous avons étudié, développé et étendu certains aspects de la classe de modèle d'Unification Jauge-Higgs, et de la classe de modèle d'Unification Holographique. Différents aspects de la physique basse-énergie ont été étudiés, incluant spectre de masses, physique des saveur, matière noire, et phénoménologie au LHC. / Although one does not know (yet) which phenomenon unitarizes WLWL scattering at the TeV scale, indirect data currently favors the Higgs boson. Since such a scalar particle is susceptible to become as heavy as the Planck mass, how can one explain its lightness ? Supersymmetry (SUSY), broken at the TeV scale, can do this stabilization, providing in the same time models of Grand Uni fied Theories (GUTs). These SUSY GUTs, combined with extra spatial dimensions compacti fied on an interval, can be particularly simple. Moreover they can be seen as the low energy limit of some string theory. This thesis is devoted to the study of such models of SUSY GUTs on flat and warped orbifolds, trying to cover the range from models to experimental constraints. We studied, developed and extended certain aspects of two interesting frameworks of this type: a framework with gauge-Higgs uni fication, and the framework of holographic grand uni fication. We investigated several aspects of the low-energy implications, including mass spectra, flavour constraints, dark matter and LHC phenomenology
|
7 |
Flavor and Dark Matter Issues in Supersymmetric ModelsChowdhury, Debtosh January 2013 (has links) (PDF)
The Standard Model of particle physics attempts to unify the fundamental forces in the Universe (except gravity). Over the years it has been tested in numerous experiments. While these experimental results strengthen our understanding of the SM, they also point out directions for physics beyond the SM. In this thesis we assume supersymmetry (SUSY) to be the new physics beyond the SM. We have tried to analyze the present status of low energy SUSY after the recent results from direct (collider) and indirect (flavor, dark matter) searches .We have tried to see the complementarity between these apparently different experimental results and search strategies from the context of low energy SUSY. We show that such complementarity does exist in well-defined models of SUSY breaking like mSUGRA, NUHM etc. The first chapter outlines the present status of the SM and discusses about the unanswered questions in SM. Keeping SUSY as the new physics beyond the SM, we also detail about its present experimental status. Chapter1 ends with the motivation and comprehensive description about each chapter of the thesis. In chapter2, we present an introduction to formal structure of SUSY algebra and the structure of MSSM.
One of the such complementarities we have studied is between flavor and dark matter. In general flavor violation effects are not considered when studying DM regions in minimal SUSY models like mSUGRA. If however flavor violation does get generated through non-minimal SUSY breaking sector, one of the most susceptible regions would be the co-annihilation region for neutralino DM. In chapter 3 we consider flavor violation in the sleptonic sector and study its implications on the stau co-annihilation region. In this work we have taken flavor violation between the right-handed smuon (˜µR) and stau (˜τR). Due to this flavor mixing the lightest slepton (ĺ1) is a flavor mixed state. We have studied the effect of such ĺ11’s in the ‘stau co-annihilation’ region of the parameter space, where the relic density of the neutralinos gets depleted due to efficient co-annihilation with the staus. Limits on the flavor violating insertion in the right-handed sleptonic sector mainly comes from BR(τ → µγ). These limits are weak in some regions of the Parameter space where cancellations happen with in the amplitudes. We look for overlaps in parameter space where both the co-annihilation condition as well as the cancellations with in the amplitudes occur. We have shown that in models with non-universal Higgs boundary conditions (NUHM) overlap between these two regions is possible. The effect of flavor violation is two fold: (a) It shifts the co-annihilation regions towards lighter neutralino masses and (b) the co-annihilation cross sections would be modified with the inclusion of flavor violating diagrams which can contribute significantly. In the overlap regions, the flavor violating cross sections become comparable and in some cases even dominant to the flavor conserving ones. A comparison among the different flavor conserving and flavor violating channels, which contribute to the neutralino annihilation cross-section, is presented.
One of the challenges of addressing quantitatively the complementarity problems is the lack of proper spectrum generator (numerical tools which computes SUSY sparticle spectrum in the presence of flavor violation in the sfermionic sector). For the lack of a publicly available code which considers general flavor violating terms in the renormalization group equations (RGE) we have developed a SUSY spectrum calculator, named as SuSeFLAV .It is a code written in FORTRAN language and calculates SUSY particle spectrum (with in the context of gravity mediation) in type I seesaw, in the presence of heavy right handed neutrinos (RHN). SuSeFLAV also calculates the SUSY spectrum in other type of SUSY breaking mechanisms (e.g. gauge mediation). The renormalization group (RG) flow of soft-SUSY breaking terms will generate large off-diagonal terms in the slepton sector in the presence of this RHNs, which will give rise to sizable amount of flavor violating (LFV) decays at the weak scale. Hence, in this code we also calculate the different rare LFV decays like, µ → eγ, τ → µγ etc. In SuSeFLAV the user has the freedom to choose the scale of the RHNs as well as the mixing matrix in neutrino sector. It is also possible to choose the values of the SUSY breaking input parameters at the user defined scale. The details of this package is discussed in chapter 4. Many of the present studies of complementarity between the direct and indirect searches are inadequate to address realistic scenarios, where SUSY breaking could be much more general compared to the minimal models. The work in this thesis is a step to wards this direction. Having said that, in the present thesis we have considered modifications of popular models with either explicit flavor violating terms (in some sectors) or sources of flavor violation through new particles and new couplings motivated by strong phenomenological reasons like neutrino masses. It should be noted however, the numerical tool which has been developed during the thesis can be used to address more complicated problems like with complete flavor violation in models of SUSY breaking.
One of the popular mechanisms of neutrino mass generation is the so called Seesaw Mechanism. Depending on the extra matter sector present in the theory there are three basic types of them. The type I seesaw, which has singlet bright-handed neutrinos, the type II seesaw contains scalar triplets and type III seesaw has additional fermionic triplets. One of the implications of the seesaw mechanism is flavor violation in the sfermionic sector even in the presence of flavor universal SUSY breaking. This leads to a complementarity between flavor experiments and direct SUSY searches at LHC. With the announcement of the results from the reactor neutrino oscillation experiments, the reactor mixing angle (θ13) in the neutrino mixing matrix (PMNS matrix) gets fixed to a rather large non-zero value. In SO (10) GUT theories neutrino Yukawa couplings of type I seesaw gets related to the up-type fermion sector of the SM. In chapter 5 we update the status of SUSY type I seesaw assuming SO (10)- like relations for neutrino Dirac Yukawa couplings and two cases of mixing, one large, PMNS-like, and another small, CKM-like, are considered. It is shown that for the large mixing case, only a small range of parameter space with moderate tan β is still allowed. It is shown that the renormalization group induced flavor violating slepton mass terms are highly sensitive to the Higgs boundary conditions. Depending on the choice of the parameters, they can either lead to strong enhancements or cancellations with in the flavor violating terms. We have shown that in NUHM scenario there could be possible cancellations which relaxes the severe constraints imposed by lepton flavor violation compared to mSUGRA.
We further updated the flavor consequences for the type II seesaw in SUSY theories. As mentioned previously in type II seesaw neutrino mass gets generated due to exchange of heavy SU (2) L triplet Higgs field. The ratio of lepton flavor violating branching ratios
(e.g. BR(τ → µγ) /BR (µ → eγ) etc.) are functions of low energy neutrino masses ans mixing angles. In chapter 6 we have analyzed how much these ratios become, after the experimental measurement of θ13, in the whole SUSY parameter space or in other words how much these ratios help to constrain the SUSY parameter space. We compute different factors which can affect this ratios. We have shown that the cMSSM-like scenarios, in which slepton masses are taken to be universal at the high scale, predict 3.5 BR(τ → µγ) / BR(µ → eγ) 30 for normal hierarchical neutrino masses. We Show that the current MEG limit puts severe constraints on the light sparticle spectrum in cMSSM-like model for seesaw scale with in1013 - 1015 GeV. These constraints can be relaxed and relatively light sparticle spectrum can be still allowed by MEG result in a class of models in which the soft mass of triplet scalar is taken to be non-universal at the GUT scale.
In chapter 7 we have analyzed the effect of largen eutrino Yukawa couplings on the supersymmetric lightest Higgs mass. In July 2012, ATLAS and CMS collaboration have updated the Higgs search in LHC and found an evidence of a scalar particle having mass around 125 GeV. The one-loop contribution to Higgs mass mainly depends on the top trilinear couplings (At), the SUSY scale and the top Yukawa (Yt). Thus in models with extra large Yukawa couplings at the high scale like the seesaw mechanism ,the renormalization scaling of the At parameter can get significantly affected. This in turn can modify the light Higgs mass at the weak scale for the same set of SUSY parameters. We have shown in type I seesaw with (Yν ~ 3Yu) the light Higgs mass gets reduced by 2 - 3 GeV in most of the parameter rspace. In other words the SUSY scale must be pushed high enough to achieve similar Higgs mass compared to the cMSSM scenario. We have got similar effect in SUSY type III seesaw scenario with (Yν ~Yu) at the GUT scale.
In chapter 8 we summarize the results of the thesis and discuss the possible future directions.
|
Page generated in 0.041 seconds