• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 12
  • 5
  • 2
  • 2
  • Tagged with
  • 65
  • 65
  • 65
  • 26
  • 20
  • 19
  • 12
  • 11
  • 11
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Study of compatibilization methods for high density polyethylene and ground tyre rubber : exploring new route to recycle scrap tyres

Casas Carné, María del Pilar 25 March 2010 (has links)
Cotxes, camions, tractors, avions... tots necessiten els neumàtics com a component imprescindible per al seu funcionament. Malauradament, degut al desgast per ús, els neumàtics tenen una vida útil limitada que obliga a renovar-los cada cert temps passant a ser Neumàtics Fora d'Ús (NFU). Paradògicament, els neumàtics són formulats per a suportar condicions extremes d'ús i, entre d'altres matèries primeres contenen cautxú vulcanitzat, una elevada quantitat d'estabilitzants i d'altres additius que fan dels neumàtics un material no biodegradable. Fins al 2006, era possible desar els NFU en abocadors però aquesta pràctica va ser prohibida per la Comunitat Europea (directiva 1993/31/EC). Aquesta directiva conjuntament amb la creixent consciència mediambiental ha potenciat la investigació per a trobar noves aplicacions per les 3.4milions de tones de NFU que es generen a l'any a Europa. Els NFU són emprats com a font d'energia o en aplicacions civils, però cada vegada més, són emprats en autopistes o per usos decoratius després de patir un procés de separació i trituració (NFU triturat). Les propietats físico-químiques dels NFU en fan un material molt interessant per la comunitat científica internacional que es centra en buscar noves vies de reciclatge mitjançant aplicacions d'alt valor afegit.Una opció per reciclar grans volums de NFU és utilitzar-los granulats com a càrrega en matrius termoplàstiques, encara que aquesta és una tasca difícil degut a la baixa compatibilitat entre aquests dos materials. Les seves característiques superficials són les responsables d'aquesta baixa compatibilitat. Cal afegir també que el tamany de les partícules de NFU obtingudes a partir de processos industrials és entre 400 and 600μm, sent aquest un tamany massa gran per poder ser fàcilment embolcallades per qualsevol matriu. D'altra banda, el cautxú dels neumàtics és troba altament vulcanitzat i, per tant, aquest reaccionarà químicament amb dificultats amb d'altres materials. Totes aquestes propietats fan dels NFU un material difícil de treballar-hi. La present tesis estudia diferents mètodes de compatibilització d'un Polietilè D'alta Densitat (PEAD) de grau d'injecció i NFU triturat obtingut a partir de processos estàndards de molturació. La resina de PEAD va ser escollit com a matriu degut al seu ampli rang d'aplicacions d'injecció. L'objectiu principal és explorar diferents mètodes de compatibilització d'aquests dos materials per obtenir òptimes propietats mecàniques, tèrmiques i morfològiques en aplicacions d'injecció. Els composites són optimitzats per a que continguin la màxima quantitat de NFU, una adequada transformació i el mínim cost. Després d'un estudi preliminar de composites basats en NFU i PEAD s'han estudiat tres mètodes diferents per millorar l'adhesió entre aquests dos materials. El primer mètode consisteix en oxidar la superfície de les partícules de NFU granulat amb tractament basats en àcids, amb l'objectiu de proporcionar rugositat per a un anclatge mecànic. En el segon mètode s'han emprat additius humectants i ceres, ja que aquestes substàncies redueixen la tensió interfacial entre les partícules de NFU i la matriu de PEAD. En l'últim mètode, es va estudiar la influència de l'Etilè Propilè Diè Monòmer (EPDM). Amb aquest mètode, les partícules de NFU són embolcallades per l'EPDM, aquest efecte pot ser millorat amb l'ús de peròxids. Les propietats dels "composites" són bastant diferents en funció del mètode emprat.Després d'una comparació dels "composites" obtinguts pels tres mètodes, s'ha trobat que el que conté 30% d'EPDM i dos peròxids, corresponent a la formulació:: 30% NFU + 40% PEAD + 30% EPDM + 0.5% Trigonox 311 + 0.1% Peròxid de Dicumilcompleix els objectius fixats en la tesis: bona adhesió entre les partícules de NFU i el PEAD on l'elevat valor d'elongació n'és una conseqüència directa, la seva obtenció mitjançant un procés de compatibilització de cost reduït, un nou material amb una elevada quantitat de NFU (30%), la seva facilitat de transformació,, i el més important, una nova via de reciclatge dels NFU per a una aplicació d'alt valor afegit. / Cars, trucks, tractors, airplanes. all need tyres as essential component to work. Unfortunately, due to its continuous use, tyres suffer from wear and have a limited lifetime; therefore, they must be changed every certain time becoming end of life tyres (EOL tyres). Paradoxically tyres are formulated to withstand difficult conditions and among other raw materials, they contain vulcanizated rubbers, high amount of stabilizers and other additives that turn tyres into non biodegradable material. Until 2006, disposal of EOL tyres in landfills was a common practice but it was banned by the European Community (directive 1993/31/EC). This European legislation together with an increasing environmental consciousness has instigated researchers to find applications for 3.4million tonnes of used tyres generated per year in Europe. Some extended uses for EOL tyres are energy recover and civil applications but the use of tyres after separation and grinding processes (material know as Ground Tyre Rubber - GTR), has increased during the last decade. Physical and chemical properties of EOL tyres make them an interesting material for the international research community focused today on finding new ways to recycle tyres for value added applications. A good option to recycle big volumes of discarded tyres is using GTR particles as filler in thermoplastic matrixes, although this is a difficult task due to the low compatibility between the two materials. The surface characteristics of the GTR particles are responsible of this low compatibility. Despite these facts, the particle size obtained from standard industrial grinding processes is between 400 and 600μm. These particles are too large to be entrapped easily in polymeric matrixes. These characteristics in conjunction with the fact that GTR is made of highly crosslinked rubber with difficulties to react chemically to other materials, make GTR a material very difficult to work with.The present thesis deals with the study of different compatibilization methods for an injection moulding grade of High Density Polyethylene (HDPE) and GTR obtained from standard industrial grinding process. The HDPE resin was chosen due to its wide range of injection moulding applications. The aim is to explore different methods to mix these two materials and obtain optimum mechanical, thermal and morphological properties for injection moulding applications. The composites are optimized to obtain the highest GTR amount, adequate processability and minimum cost. After a preliminary study of the composites based on GTR and HDPE, three different methods to improve the adhesion between these two materials are studied. The first method consists in an oxidizing treatment on GTR particles surface in order to promote mechanical anchoring. In the second method the influence of wetting additives and waxes is studied. These substances reduce interfacial tension between GTR particles and HDPE matrix. The third and last method, study the influence of Ethylene Propylene Diene Monomer (EPDM) addition with and without peroxides. In this method, GTR particles are encapsulated by EPDM and this effect can be boosted by the use of peroxides. The composites properties are quite different depending on the used method.After a comparison of the composites obtained by the three different compatibilization methods, it is found that the one with 30% of EPDM plus two peroxides, corresponding to30% GTR + 40% HDPE + 30% EPDM + 0.5% Trigonox 311 + 0.1% Dicumyl Peroxidefulfil the objectives of the thesis. This composite has good adhesion between GTR and HDPE that results in high elongation, it is obtained by a cheap compatibilization process and contains a high amount of recycled tyres (30%), it is easy to process, and the most important thing, it represents a new route to recycle scrap tyres for a value added application.
22

Graft Copolymerization Of P-acryloyloxybenzoic Acid Onto High Density Polyethylene

Cagirici, Seda 01 December 2003 (has links) (PDF)
The monomer, p-acryloyloxybenzoic acid (ABA) was synthesized by condensation reaction of acryloyl chloride and p-hydroxybenzoic acid in alkaline medium. Polymerization of the monomer and grafting of the produced polymer (PABA) onto high density polyethylene (HDPE) were expected to be carried simultaneously in melt mixing at high temperature. The graft copolymerization was studied at varying concentrations of the monomer in the reaction mixture at constant temperature (200 0C). Grafted HDPE samples were investigated by several techniques such as DSC, FTIR, MFI and mechanical testing. The tensile tests of PABA-g-HDPE showed an improvement particularly in stress at yield and Young&rsquo / s modulus whereas the strain at break values showed a decrease for all compositions compared to neat HDPE.
23

Ternary Nanocomposites Of Low Density,high Density And Linear Low Density Polyethylenes With The Compatibilizers E-ma_gma And E-ba-mah

Isik Coskunses, Fatma 01 June 2011 (has links) (PDF)
The effects of polyethylene, (PE), type, compatibilizer type and organoclay type on the morphology, rheological, thermal, and mechanical properties of ternary low density polyethylene (LDPE), high density polyethylene (HDPE), and linear low density polyethylene (LLDPE), matrix nanocomposites were investigated in this study. Ethylene &ndash / Methyl acrylate &ndash / Glycidyl methacrylate terpolymer (E-MAGMA) and Ethylene &ndash / Butyl acrylate- Maleic anhydrate terpolymer (E-BA-MAH) were used as the compatibilizers. The organoclays selected for the study were Cloisite 30B and Nanofil 8. Nanocomposites were prepared by means of melt blending via co-rotating twin screw extrusion process. Extruded samples were injection molded to be used for material characterization tests. Optimum amounts of ingredients of ternary nanocomposites were determined based on to the mechanical test results of binary blends of PE/Compatibilizer and binary nanocomposites of PE/Organoclay. Based on the tensile test results, the optimum contents of compatibilizer and organoclay were determined as 5 wt % and 2 wt %, respectively. XRD and TEM analysis results indicated that intercalated and partially exfoliated structures were obtained in the ternary nanocomposites. In these nanocomposites E-MA-GMA compatibilizer produced higher d-spacing in comparison to E-BA-MAH, owing to its higher reactivity. HDPE exhibited the highest basal spacing among all the nanocomposite types with E-MA-GMA/30B system. Considering the polymer type, better dispersion was achieved in the order of LDPE&lt / LLDPE&lt / HDPE, owing to the linearity of HDPE, and short branches of LLDPE. MFI values were decreased by the addition of compatibilizer and organoclay to the matrix polymers. Compatibilizers imparted the effect of sticking the polymer blends on the walls of test apparatus, and addition of organoclay showed the filler effect and increased the viscosity. DSC analysis showed that addition of compatibilizer or organoclay did not significantly affect the melting behavior of the nanocomposites. Degree of crystallinity of polyethylene matrices decreased with organoclay addition. Nanoscale organoclays prevented the alignment of polyethylene chains and reduced the degree of crystallinity. Ternary nanocomposites had improved tensile properties. Effect of compatibilizer on property enhancement was observed in mechanical results. Tensile strength and Young&rsquo / s modulus of nanocomposites increased significantly in the presence of compatibilizers.
24

Ground displacements and pipe response during pulled-in-place pipe installation.

Cholewa, Johnathan 02 April 2009 (has links)
Polymer pipes, typically high density polyethylene (HDPE), can be pulled-into-place, avoiding traditional cut-and-cover construction, using pipe bursting and horizontal directional drilling (HDD) pipe installation techniques. Of particular interest, are the ground displacements, induced by cavity expansion, associated with these techniques and the strains that develop in existing pipes in response to these displacements. Further, the axial stress-strain response of the new HDPE pipe during and after the cyclic pulling force history required to pull the pipe into place is of interest. Surface displacements and strains in an adjacent polyvinyl chloride (PVC) pipe induced by static pipe bursting were measured during the replacement of a new unreinforced concrete pipe. For the pipe bursting geometry tested, the maximum vertical surface displacement measured at the ground surface was 6 mm, while the distribution of vertical surface displacements extended no more than 2 m on either side of the centreline. The maximum longitudinal strain measured in the PVC pipe was less than 0.1% and its vertical diameter decreased by only 0.5%, suggesting that pipe bursting did not jeopardize the long-term performance of the water pipe tested. In addition, results from identical stress relaxation and creep tests performed on whole pipe samples and coupons trimmed from a pipe wall were compared, and these demonstrated that the coupons exhibited higher modulus than the pipe samples. Therefore, isolated pipe samples, as opposed to coupons, were tested to quantify the stress-strain response of HDPE pipe during the simulated installation, strain recovery, and axial restraint stages of HDD. Axial strains were found to progressively accumulate when an HDPE pipe sample was subjected to the cyclic stress history used to simulate an HDD installation. It was shown that existing linear and nonlinear viscoelastic models can serve as predictive design tools for estimating the cyclic strain history of HDPE pipe during installation. For the specific conditions examined, the tensile axial stresses redeveloped in the pipe samples, once restrained, were not large enough to lead to long-term stress conditions conducive to slow crack growth even when the short-term performance limits were exceeded by a factor of 1.5. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2009-04-01 18:19:24.434
25

Estudo da modificação de argilas bentoníticas para aplicação em nanocompósitos de polietileno.

BARBOSA, Renata. 26 September 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-09-26T15:00:31Z No. of bitstreams: 1 RENATA BARBOSA - TESE (PPGEP) 2009.pdf: 13292645 bytes, checksum: e1d1eb846f17881cd108a8bad8f924ec (MD5) / Made available in DSpace on 2018-09-26T15:00:31Z (GMT). No. of bitstreams: 1 RENATA BARBOSA - TESE (PPGEP) 2009.pdf: 13292645 bytes, checksum: e1d1eb846f17881cd108a8bad8f924ec (MD5) Previous issue date: 2009-06-19 / Nanocompósitos de PEAD/argila bentonítica modificada e sem modificação foram preparados por meio do processo de intercalação por fusão. Realizou-se, previamente um estudo sistemático com quatro sais quaternários de amônio e em três tipos de argilas bentoníticas. Em seguida, fez-se a escolha de um sal quaternário de amônio e de uma argila bentonítica para dar continuidade ao trabalho. A argila escolhida foi organofilizada usando-se diferentes percentuais de sal quaternário de amônio 100%, 125% e 150% baseados na capacidade de troca de cátions (CTC) da argila. Ficou evidente por difração de raios- X (DRX) que os sais foram incorporados à estrutura da argila confirmando assim sua organofilização. Em princípio, todos os sais poderão ser usados para a organofilização da argila e, consequentemente nos sistemas de nanocompósitos PEAD/argila organofílica. Porém, foi verificado que o tipo de ânion presente pode influenciar a estabilidade térmica do sal quaternário de amônio. Os nanocompósitos foram preparados em uma extrusora de rosca dupla contrarrotacional e, em seguida, corpos de prova foram moldados por injeção. Para a avaliação da inflamabilidade dos sistemas foi utilizado o teste de queima na posição horizontal segundo a norma (UL-94HB) e o método do Calorímetro de Cone. O comportamento térmico dos nanocompósitos foi avaliado por temperatura de deflexão térmica (HDT) e termogravimetria (TG). As técnicas de DRX e microscopia eletrônica de transmissão (MET) foram utilizadas para caracterizar a morfologia e analisar o grau de expansão das argilas preparadas bem como o grau de esfoliação dos nanocompósitos. As propriedades mecânicas de tração e impacto também foram analisadas. Para efeito de comparação, determinadas composições foram extrudadas utilizando-se duas configurações de roscas da extrusora ZSK-30 corrotacional, com objetivos de variar as condições de processo e melhorar as propriedades dos nanocompósitos obtidos. Observou-se que o percentual de sal de amônio e o tipo de compatibilizante polar influenciam nas propriedades finais dos nanocompósitos. / High Density Polyethylene (HDPE) nanocomposites containing unmodified and modified bentonite clay were prepared by melt intercalation technique. Initially, four quaternary ammonium salts and three types of bentonitic clays were studied. Afterwards, one type of salt and one type of clay were chosen for the study. The clay was organophilized using 100,125 and 150wt% of quaternary ammonium salt based on cationic exchange capacity (CEC) of the clay. It was evident from the X-ray diffraction (XRD) that the salts were incorporated into the clay structure confirming its organophilization. In general, all salts may be used for clay organophilization and hence, on HDPE/Organophilic clay nanocomposites. However, it was verified that the type of anion present may influence the thermal stability of the quaternary ammonium salt. The nanocomposites were prepared in a counter-rotating twin screw extruder and the samples were prepared by injection molding. For the evaluation of the flammability, horizontal burn (UL-94HB) and cone calorimeter methods were used. The thermal behavior of the nanocomposites was analyzed by Heat Distortion Temperature (HDT) and Thermogravimetry (TG). XRD and Transmission Electron Microscopy (MET) techniques were used to characterize the morphology and analyze the degree of expansion of the prepared clays, and also the degree of exfoliation of the nanocomposites. Mechanical properties (Tensile and Impact strength) were also analyzed. Some compositions were extruded using two screw configurations of ZSK-30 co-rotacional extruder with the aim of improving the properties of the nanocomposites obtained by varying the processing conditions. It was observed that the percentage of the ammonium salt and the type of polar compatibilizer influence the final properties of the nanocomposites.
26

Caracterização de compósito produzido com diferentes frações de pó de madeira e polietileno de alta densidade

Melo, Jessyka Meierjurgen 15 June 2015 (has links)
Made available in DSpace on 2016-03-15T19:36:55Z (GMT). No. of bitstreams: 1 Jessyka Meierjurgen Melo.pdf: 1463151 bytes, checksum: b96ae4642ea3139b9e867598e3bba7c1 (MD5) Previous issue date: 2015-06-15 / The present work aimed to highlight the study of polymeric composite development to be responsible with the environment and with the growth of the recycling of materials, from the use of high-density polyethylene (HDPE) with eucalyptus wood dust from the manufacturing furniture. The study started from a literature search where were analyzed the factors involving the subject in question, highlighting the concept of polymer, synthetic fibers, wood dust presence, and composites to identify and understand the problem in issue. Mechanical, morphological and rheological tests were done with composites with concentrations of 5, 10 and 20% of wood dust in relation to the polymer matrix in order to characterize and compare the obtained materials. It was noted that during the study samples with wood dust had higher mechanical performance compared to pure HDPE sample. Based on this context, this study was developed to analyze the possibilities ahead so the production of HDPE composite from different wood dust fractions. / O presente trabalho teve como objetivo destacar o estudo de desenvolvimento de compósito polimérico responsável com o meio ambiente e com o crescimento da reciclagem de materiais, a partir da utilização de polietileno de alta densidade (PEAD) com pó de madeira de eucalipto, proveniente da fabricação de móveis. O estudo iniciou a partir de uma pesquisa bibliográfica onde foram analisados os principais fatores que envolvem o tema em questão, destacando o conceito de polímero, das fibras sintéticas, a presença do pó de madeira, seus compósitos a fim de identificar e conhecer o problema em questão. O estudo desenvolveu-se a partir de ensaios mecânicos, morfológico e reológico, dos compósitos com as concentrações de 5, 10 e 20% de madeira em relação à matriz polimérica, a fim de caracterizar e comparar os materiais obtidos. Notou-se que durante os estudos as amostras com pó de madeira apresentaram maior desempenho mecânico comparado a amostra de PEAD puro. Baseado neste contexto, este estudo foi desenvolvido visando assim analisar as possibilidades frente a produção do compósito de PEAD a partir de diferentes concentrações de pó de madeira.
27

High-Density Polyethylene/Peanut Shell Biocomposites

Londoño Ceballos, Mauricio 05 1900 (has links)
A recent trend in the development of renewable and biodegradable materials has led to the development of composites from renewal sources such as natural fibers. This agricultural activity generates a large amount of waste in the form of peanut shells. The motivation for this research is based on the utilization of peanut shells as a viable source for the manufacture of biocomposites. High-density polyethylene (HDPE) is a plastic largely used in the industry due to its durability, high strength to density ratio, and thermal stability. This research focuses in the mechanical and thermal properties of HDPE/peanut shell composites of different qualities and compositions. The samples obtained were subjected to dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and mechanical tensile strength tests. TO prepare the samples for analysis, the peanut shells were separated into different mesh sizes and then mixed with HDPE at different concentrations. The results showed that samples with fiber size number 10 exhibited superior strength modulus of 1.65 GPa versus results for HDPE alone at 1.32 GPa. The analysis from the previous experiments helped to determine that the fiber size number 10 at 5%wt. ratio in HDPE provides the most optimal mechanical and thermal results. From tensile tests the highest modulus of elasticity of 1.33 GPa was achieved from the samples of peanut shells size number 10 in HDPE at 20%wt. ratio, while the results for HDPE alone were only of 0.8 GPa. The results proved the hypothesis that the addition of peanut shells to HDPE enhances both the thermal and mechanical properties of the composite.
28

Quantitative Analysis of Antioxidants from High Density Polyethylene (HDPE) by off-line Supercritical Fluid Extraction Coupled High Performance Liquid Chromatography

Pinto, Angela Marie III 27 August 1997 (has links)
Plastics are widely used and they vary in their applicability, ranging from automobile parts, components for houses and buildings, and packaging for everything from food to electronic parts. The diverse applications of plastics, such as polystyrene, polyolefins and polyester, are credited to the incorporation of additives. Additives improve the performance of these and other polymer resins. Without the incorporation of such additives, for example Ethanox ® 330, some plastics would degrade during processing or over time. To ensure that the specified amount of an additive or combination of additives are incorporated into a polymer after the extrusion process, a rapid and accurate analytical method is required. Quantitation of additive(s) in the polymer is necessary, since the additive(s) may degrade and the amount of additive(s) can influence the physical nature of the polymer. Conventional extraction techniques for polymer additive(s), such as, Soxhlet or dissolution / precipitation are labor intensive, time consuming, expensive, and the optimal recovery is significantly less than 90 percent. In addition, a large amount of solvent , such as toluene or decalin, must be eliminated in order to concentrate the sample prior to chromatographic separation. Supercritical Fluid Extraction (SFE) has been employed as an alternative polymer preparation technique. SFE is a favorable means for various analytical sample preparation applications, credited to its short extraction times. This research employs SFE for the extraction of the antioxidant Ethanox® 330 from high density polyethylene (HDPE) followed by HPLC/UV analysis. The effects of temperature, modifier type, and modifier concentration were investigated. Once the optimal extraction conditions were determined, the extraction efficiency of Ethanox ® 330 as a single additive and in the presence of co-additives from HDPE were investigated. Recoveries of greater than 90% were obtained for Ethanox ® 330 when a secondary antioxidant was present in the HDPE. / Master of Science
29

Bottle water storage location and its impact on microbiogical quality

Palmer, Hilary R. 01 January 2009 (has links)
In recent decades the quality and safety of bottled water has come into question, while bottled water sales and demand have steadily grown. It is important that consumers as well as manufacturers are made aware of the microbial environment of bottled water. Many studies have been implemented to evaluate the microbiological content of bottled water. Although some laboratory studies have shown that microbial counts of bottled water can reach as high as 16^3 CFU/mL, few studies, if any, have studied the impact of storage location on bottled water microbial activity. This document reports on an investigation that evaluated the microbiological quality of bottled water relative to storage conditions and storage duration. Unlike previous studies that evaluated bottled water having been stored under the laboratory conditions, the work conducted in this study evaluated storage scenarios that included a car trunk, covered porch, indoor cabinet and refrigerator. These storage conditions allow for comparison of prior studies conducted in the laboratory to more realistic storage coniditions used by consumers. Analyses of bottled water under these alternative storage conditions indicated that microbial growth did occur in stored water and varied between lcoation and holding time. It was determined that heterotrophic plate counts (HPCs) were greater in warmer storage environments as was exhibited by the refrigerated and indoor locations. Additionally, mathematical models were developed in this work that predicted the microbial growth rate in bottled water as a function of holding time, using commonly available statistical software that evaluated data predicted using an exponential model (R2 correlation of up to 0.84) for two different storage conditions. Although increased levels of HPC bacteria are generally safe for those in good health, they are used as an indicator test for microbial quality. Furthermore, higher levels of HPC have also been shown to pose some additional health risks to immunocomprimised individuals. Therefore, results from the study would indicate that it may be beneficial for consumers to store their bottled water indoors or in a refrigerator.
30

A Nonlinear Constitutive Model for High Density Polyethylene at High Temperature

Rajasekaran, Nepolean 20 April 2011 (has links)
No description available.

Page generated in 0.0591 seconds