• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Damage in adhesively bonded joints : sinusoidal and impact fatigue

Casas-Rodriguez, Juan P. January 2008 (has links)
The main aim of this research was to investigate the behaviour of adhesive joints exposed to repeated low-velocity impact i.e. impact fatigue (IF), and to compare this loading regime with standard fatigue (SF), i.e. non-impacting, constant amplitude, sinusoidal loading conditions. Two types of lap joint configuration using rubber toughened modified epoxy adhesives were used and exposed to various loading conditions in order to determine the fatigue behaviour of the joints for each load conditions. The fatigue life was investigated using bonded aluminium alloy (7075-T6) single lap joint (SLJ) specimens, where it was seen that IF is an extremely damaging load regime compared to SF. Different trends were visible in force-life plots for these two types of loading. In SF a gradual decrease in the fatigue life with increasing load was observed, whereas, in IF a significant decrease in life was seen at relatively modest levels of maximum force after relatively few cycles. Comparisons of the fatigue life show a considerably earlier failure in IF than in SF for comparable levels of force and energy. Additionally, it was demonstrated that the maximum force per cycle, loading time, stiffness and strength decreased as a result of damage generated in the sample during IF.
2

Mechanisms of deformation and energy dissipation in antler and arthropod cuticle with bio-inspired investigations

de Falco, Paolino January 2018 (has links)
Bio-composite hierarchical materials have attracted the interest of the academic community operating in the field of bio-inspired materials for their outstanding mechanical properties achieved via lightweight structural designs. Antler and mantis shrimp's cuticle are extreme examples of materials naturally optimised to resist impacts and bear dynamic loading. Firstly, a class of finite-element fibril models was developed to explain the origin of heterogeneous fibrillar deformation and hysteresis from the nanostructure of antler. Results were compared to synchrotron X-ray data and demonstrated that the key structural motif enabling a match to experimental data is an axially staggered arrangement of stiff mineralised collagen fibrils coupled with weak, damageable interfibrillar interfaces. Secondly, the cuticle of the crustacean Odontodactylus scyllarus, known as peacock mantis shrimp, was investigated. At the nanoscale it consists of mineralised chitin fibres and calcified protein matrix, which form plywood layers at the microscale. Lamination theory was used to calculate fibrillar deformation and reorientation and, in addition, an analytical formulation was used to decouple in-plane fibre reorientation from diffraction intensity changes induced by 3D lamellae tilting. This animal also attracted my attention for using its hammer-like appendages to attack and destroy the shells of prey with a sequence of two strikes. Inspired by this double impact strategy, I performed a set of parametric finite-element simulations of single, double and triple mechanical hits, to compute the damage energy of the target. My results reveal that the crustacean attack strategy has the most damaging effect among the double impact cases, and lead me to hypothesise, that optimal damaging dynamics exists, depending on the sequence of consecutive impacts and on their time separation values. These new insights may provide useful indications for the design of bio-inspired materials for high load-bearing applications.
3

超小型燃焼器の開発に関する詳細素反応機構を考慮した数値解析

YAMAMOTO, Kazuhiro, YAMASHITA, Hiroshi, SUZUKI, Shin, 山本, 和弘, 山下, 博史, 鈴木, 新 January 2008 (has links)
No description available.
4

センターエアーバーナによる燃焼器の小型化に関する数値解析

YAMAMOTO, Kazuhiro, YAMASHITA, Hiroshi, MAKITA, Yuichiro, 山本, 和弘, 山下, 博史, 槙田, 雄一郎 January 2009 (has links)
No description available.
5

The Effects of High-Load Versus Low-Load Resistance Training on Isokinetic Knee Extensor and Flexor Peak Power, Vastus Intermedius, and Vastus Lateralis Muscle Thickness in Untrained Overweight and Obese Adults

January 2020 (has links)
abstract: Sedentary behavior and excessive weight gain have been proven to deteriorate many characteristics of muscle. Low muscular power and mass with excess fat mass are risk factors for a multitude of chronic conditions and functional disabilities. Resistance training (RT) has long been accepted as a rehabilitative method of maintaining or enhancing muscular performance and composition. There are various methods of determining lower extremity muscular power; however, isokinetic dynamometry has emerged as one of the most accurate and reliable methods in clinical and research settings. Likewise, various methods exist for determining muscle thickness; however, many of those methods are expensive and can expose individuals to radiation. Ultrasonography has emerged as an accurate and reliable alternative to measuring lower extremity muscle thickness. The objective of this study was to assess the effects of high-load/low-volume (HLLV) and low-load/high-volume (LLHV) RT on isokinetic knee extensor and flexor peak power in sedentary, RT naïve, overweight or obese men and women (Body Mass Index ≥ 25 kg/m2). Twenty-one subjects (n = 21) completed this study and were randomized into one of the following groups: control, a HLLV group that performed three sets of 5 repetitions for all exercises until volitional fatigue, and LLHV which performed three sets of 15 repetitions for all exercises until volitional fatigue. Subjects randomized to the RT groups performed full-body exercises routines on three non-consecutive days per week. Changes in isokinetic knee extensor and flexor peak power, quadriceps ultrasound muscle thickness, and right leg segment of dual-energy X-ray absorptiometry (DEXA) scans were measured before and after the 12-week RT intervention. There were no significant differences found in group, time or, group by time interactions for knee extensor and flexor peak power using isokinetic dynamometry. Other than a group interaction for vastus intermedius muscle thickness (P=0.008), no significant interactions or differences were observed for any of the other variables tested. Based on the results of this study, neither high- nor low-load RT resulted in significant differences between intervention groups in peak power of the knee extensors and flexor, muscle thickness changes of the vastus intermedius, and vastus lateralis and, in the right lower extremity segmented body composition measures using DEXA. / Dissertation/Thesis / Masters Thesis Exercise and Wellness 2020
6

Small Form Factor Hybrid CMOS/GaN Buck Converters for 10W Point of Load Applications

January 2018 (has links)
abstract: Point of Load (PoL) converters are important components to the power distribution system in computer power supplies as well as automotive, space, nuclear, and medical electronics. These converters often require high output current capability, low form factor, and high conversion ratios (step-down) without sacrificing converter efficiency. This work presents hybrid silicon/gallium nitride (CMOS/GaN) power converter architectures as a solution for high-current, small form-factor PoL converters. The presented topologies use discrete GaN power devices and CMOS integrated drivers and controller loop. The presented power converters operate in the tens of MHz range to reduce the form factor by reducing the size of the off-chip passive inductor and capacitor. Higher conversion ratio is achieved through a fast control loop and the use of GaN power devices that exhibit low parasitic gate capacitance and minimize pulse swallowing. This work compares three discrete buck power converter architectures: single-stage, multi-phase with 2 phases, and stacked-interleaved, using components-off-the-shelf (COTS). Each of the implemented power converters achieves over 80% peak efficiency with switching speeds up-to 10MHz for high conversion ratio from 24V input to 5V output and maximum load current of 10A. The performance of the three architectures is compared in open loop and closed loop configurations with respect to efficiency, output voltage ripple, and power stage form factor. Additionally, this work presents an integrated CMOS gate driver solution in CMOS 0.35um technology. The CMOS integrated circuit (IC) includes the gate driver and the closed loop controller for directly driving a single-stage GaN architecture. The designed IC efficiently drives the GaN devices up to 20MHz switching speeds. The presented controller technique uses voltage mode control with an innovative cascode driver architecture to allow a 3.3V CMOS devices to effectively drive GaN devices that require 5V gate signal swing. Furthermore, the designed power converter is expected to operate under 400MRad of total dose, thus enabling its use in high-radiation environments for the large hadron collider at CERN and nuclear facilities. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2018

Page generated in 0.0604 seconds