Spelling suggestions: "subject:"high anumerical aperture"" "subject:"high anumerical perture""
1 |
Optimization of point spread function of a high numerical aperture objective lens : application to high resolution optical imaging and fabrication / Optimisation du spot de focalisation d'un objectif de microscope de grande ouverture numérique : applications à l'imagerie optique à super-résolue et à la nanofabricationLi, Qinggele 15 December 2014 (has links)
Ce travail de thèse porte sur la caractérisation et l'optimisation du spot de focalisation d'un objectif de microscope de grande ouverture numérique pour des applications d'imagerie super-résolue et de nanofabrication.Dans la première partie, nous avons systématiquement étudié les distributions de polarisation et d'intensité du faisceau laser dans la région du point focal en fonction de différents paramètres du faisceau incident tels que la phase, la polarisation, l’amplitude ainsi que l'influence du milieu de propagation, tel que l’indice de réfraction. Nous avons mis en oeuvre différentes méthodes théoriques pour contrôler et manipuler les distributions de polarisation et d'intensité du spot de focalisation. Ces prédictions théoriques sont vérifiées expérimentalement via un système optique confocal en mesurant l’image de fluorescence d’une nanoparticule d’or pour différentes caractéristiques.Dans la seconde partie de ce travail, une nouvelle microscopie basée sur le mécanisme d'absorption ultra-faible à un photon a été démontré théoriquement et expérimentalement. Le calcul théorique basé sur l'approche vectorielle de Debye, qui prend en compte l'effet d'absorption du matériau, montre qu'il est possible de focaliser le faisceau lumineux en profondeur à l'intérieur d'un matériau si celui-ci présente une absorption linéaire ultra-faible à la longueur d'onde d'excitation. Cette méthode, dite (LOPA), a ensuite permis de fabriquer des structures 2D et 3D submicrométriques, similaires à celles obtenues par la méthode utilisant l’absorption à deux photons. / Nowadays, far field optical microscopy is widely used in many fields, for fundamental research and applications. The low cost, simple operation, high flexibility are its main advantages. The key parameter of an optical microscope is the objective lens.This thesis's work focuses mainly on the characterization and optimization of the point spread function (PSF) of a high numerical aperture (NA) objective lens (OL) for applications of high resolution imaging and nano-fabrication.In the first part of the thesis, we have systematically investigated the dependency of polarization and intensity distributions of the focusing spot on numerous parameters, such as the phase, the polarization, and the beam mode of incident beam, as well as the refractive index mismatch. Then, we demonstrated theoretically different methods for manipulation of the polarization and intensity distributions of the focusing spot, which can have desired shapes and are useful for different applications. By using a home-made confocal microscope, we have experimentally verified some of the theoretical predictions, for example, vector properties of light beam under a tight focusing condition. In the second part of dissertation work, a new, simple and inexpensive method based on the one-photon absorption mechanism has been demonstrated theoretically and experimentally for 3D sub-micrometer imaging and fabrication applications. The theoretical calculation based on vectorial Debye approximation and taken into account the absorption effect of material shows that it is possible to focus the light tightly and deeply inside the material if the material presents a very low one-photon absorption (LOPA) at the excitation wavelength. We have then demonstrated experimentally that the LOPA microscopy allows to achieve 3D imaging and 3D fabrication with submicrometer resolution, similar to those obtained by two-photon absorption microscopy.
|
2 |
Design, Analysis, And Optimization Of Diffractive Optical Elements Under High Numerical Aperture FocusingJabbour, Toufic 01 January 2009 (has links)
The demand for high optical resolution has brought researchers to explore the use of beam shaping diffractive optical elements (DOEs) for improving performance of high numerical aperture (NA) optical systems. DOEs can be designed to modulate the amplitude, phase and/or polarization of a laser beam such that it focuses into a targeted irradiance distribution, or point spread function (PSF). The focused PSF can be reshaped in both the transverse focal plane and along the optical axis. Optical lithography, microscopy and direct laser writing are but a few of the many applications in which a properly designed DOE can significantly improve optical performance of the system. Designing DOEs for use in high-NA applications is complicated by electric field depolarization that occurs with tight focusing. The linear polarization of off-axis rays is tilted upon refraction towards the focal point, generating additional transverse and longitudinal polarization components. These additional field components contribute significantly to the shape of the PSF under tight focusing and cannot be neglected as in scalar diffraction theory. The PSF can be modeled more rigorously using the electromagnetic diffraction integrals derived by Wolf, which account for the full vector character of the field. In this work, optimization algorithms based on vector diffraction theory were developed for designing DOEs that reshape the PSF of a 1.4-NA objective lens. The optimization techniques include simple exhaustive search, iterative optimization (Method of Generalized Projections), and evolutionary computation (Particle Swarm Optimization). DOE designs were obtained that can reshape either the transverse PSF or the irradiance distribution along the optical axis. In one example of transverse beam shaping, all polarization components were simultaneously reshaped so their vector addition generates a focused flat-top square irradiance pattern. Other designs were obtained that can be used to narrow the axial irradiance distribution, giving a focused beam that is superresolved relative to the diffraction limit. In addition to theory, experimental studies were undertaken that include (1) fabricating an axially superresolving DOE, (2) incorporating the DOE into the optical setup, (3) imaging the focused PSF, and (4) measuring aberrations in the objective lens to study how these affect performance of the DOE.
|
3 |
High Aspect Ratio Lithographic Imaging at Ultra-high Numerical Apertures: Evanescent Interference Lithography with Resonant Reflector UnderlayersMehrotra, Prateek January 2012 (has links)
A near-field technique known as evanescent interferometric lithography allows for high resolution imaging. However its primary limitation is that the image exponentially decays within the photoresist due to physical limits. This thesis aims to overcome this limitation and presents a method to considerably enhance the depth of focus of images created using evanescent interferometric lithography by using a material underlay beneath the photoresist.
A key enabler of this is the understanding that evanescent fields couple to surface states and operating within proximity of a resonance, the strength of the coupling allows for considerable energy extraction from the incident beam and redistribution of this energy in a photoresist cavity. This led to the analysis of the Fresnel equations, which suggested that such coupling was in fact the result of an enhanced reflectance that takes place at boundaries of carefully chosen materials. While it is known that metals and lossy dielectrics result in surface plasmon polaritons (SPP) and surface exciton polaritons (SEP) as conventional solutions to the Fresnel reflection equations for the TM polarization of light, there is no such naturally occurring surface state that allows evanescent wave enhancement with the TE polarization of light. Further investigation of the Fresnel reflection equations revealed both for TM and TE that in fact another solution exists that is but unconventional to enhance the reflectivity. This solution requires that one of the media have a negative loss. This is a new type of surface resonance that requires that one of the media be a gain medium; not one in the optical pumped sense but one that would naturally supply energy to a wave to make it grow. This new surface resonance is also a key result of this thesis. Clearly, however this is only a hypothetical solution as a real gain medium would violate the conservation of energy.
However, as it is only the reflectance of this gain medium that is useful for evanescent wave enhancement, in fact a multilayered stack consisting of naturally occurring materials is one way to achieve the desired reflectivity. This would of course be only an emulation of the reflectivity aspect of the gain medium. This multilayered stack is then an effective gain medium for the reflectivity purposes when imaging is carried out at a particular NA at a particular wavelength. This proposal is also a key idea of this thesis. At λ = 193 nm, this method was used to propose a feasible design to image high resolution structures, NA = 1.85 at an aspect ratio of ~3.2. To experimentally demonstrate the enhancements, a new type of solid immersion test bed, the solid immersion Lloyd's mirror interference lithography test-bed was constructed. High quality line and space patterns with a half-pitch of 55.5 nm were created using λ = 405 nm, corresponding to a NA of 1.824, that is well in the evanescent regime of light. Image depths of 33-40 nm were seen. Next, the evanescent image was coupled to an effective gain medium made up of a thin layer of hafnium oxide (HfO) upon silicon dioxide (SiO2). This resulted in a considerable depth enhancement, and 105 nm tall structures were imaged.
The work in this thesis details the construction of the solid immersion lithography test-bed, describes the implementation of the modeling tools, details the theory and analysis required to achieve the relevant solutions and understanding of the physical mechanism and finally experimentally demonstrates an enhancement that allows evanescent interferometric lithography beyond conventional limits.
|
Page generated in 0.0608 seconds