• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 11
  • 11
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Near-Field Scanning Optical Lithography for Nanostructuring Electroactive Polymers

Cotton, Daniel Vincent January 2007 (has links)
Research Doctorate - Doctor of Philosophy (PhD) / The photochemistry of poly{p-phenylene[1-(tetrahydrothiophen-1-io)ethylene chloride]} (PPTEC), a water soluble precursor of the semiconducting polymer, poly{p-phenylenevinylene} (PPV), has been studied both under atmospheric conditions and in environments devoid of oxygen. UV-visible spectroscopy and photoluminescence data has been used to provide a picture of the mechanistic pathways involved in UV irradiation of the PPTEC material. A new quantitative model for the effect of UV irradiation upon film morphology is presented. The technique of near-field scanning optical lithography (NSOL) has been used to produce arbitrary structures of the semi-conducting polymer poly{p-phenylenevinylene} at sizes comparable with optical wavelengths. Structures on this scale are of interest for integrated optical devices and organic solar cells. The structures are characterised using AFM and SEM and examined in the context of the electric field distribution at the NSOM tip. The Bethe-Bouwkamp model for electric field distribution at an aperture has been used, in combination with the developed model for precursor solubility dependence on UV energy dose, to predict the characteristics of lithographic features produced by NSOL. Fine structure in the lithographic features that are characteristic of the technique are investigated and their origins explained. Suggestions for the improvement of the technique are made. Presented here for the first time is a device manufactured by the technique of NSOL functioning as an optical device. The technique of NSOL is used to manufacture an optical transmission phase grating (or phase mask) of PPV, this was done as a proof of concept for device manufacture by this method and to demonstrate the potential usefulness of the unique characteristics of the technique. The phase mask was characterised using AFM and SEM and examined in the context of how well a diffraction pattern matches with theoretical calculations.
2

Absorbance Modulation Optical Lithography: Simulating the Performance of an Adaptable Absorbance Mask in the Near-Field.

Foulkes, John Edward January 2010 (has links)
The challenge for lithography today is to continue the reduction of feature size whilst facing severe theoretical and practical limitations. In 2006 Rajesh Menon and Hank Smith proposed a new lithography system named absorbance modulation optical lithography (AMOL) [Menon 2006]. AMOL proposed replacing the normal metal mask of a lithography system with an absorbance modulation layer (AML), made from a photochromic material. This allows, through the competition between two incident wavelengths, the creation of an adaptive absorbance mask. The AML allows intimate contact to an underlying resist and hence the optical near-field may be used to create sub-diffraction limited exposures. The aim of this thesis is to model AMOL and demonstrate the abilities and the limits of the system, particularly focusing on sub-diffraction limited imaging. This thesis describes the construction of a vector electromagnetic simulation to explore the idea and performance of AMOL, and an exploration of the ability of AMOL to propagate sub-diffraction limited images into a photoresist. A finite element method (FEM) model was constructed to simulate the formation of apertures in the AML and light transmission through the system. Three major areas of interest were explored in this thesis; the effect of polarisation on imaging, using a plasmonic reflector layers (PRLs) to improve the depth of focus (DOF), and introducing a superlens to AMOL. Investigations of polarisation demonstrated strong preference for a transverse magnetic (TM) polarised exposing wavelength for near-field exposures. Associated with polarisation, and supporting work with absorbance gratings, the importance of the material parameters of the AML in allowing sub-diffraction limited exposures was discussed. It was also noted that, in common with all near-field systems, the depth of focus (DOF) was poor, worse than comparable metal systems. This thesis also demonstrates that the introduction of a PRL can improve the DOF and process latitude for resist thicknesses up to 60 nm and, although performance was reduced when using a silver PRL, the substantial improvements to the DOF and process latitude make a PRL valuable for an AMOL system. This thesis also models the superlens to an AMOL system, which theoretically allows propagation of the image in the near-field. It is demonstrated that the superlens can project an AMOL image into an underlying resist, but that this image is degraded, especially for thick and non-ideal superlenses. The superlens does have a second useful effect, as it can act as a dichroic filter; decreasing the intensity ratio in the resist by a factor of ten, overcoming issues of resist sensitivity. The superlens can allow image projection and filtering with AMOL, however improvements to the available superlens materials or changes to the AML will be needed to avoid image deterioration. This thesis has developed the first full-vector model of an absorbance modulation optical lithography (AMOL) system. This model has been used to increase the understanding of the complex effects that go into the creation of sub-diffraction limited features with AMOL. In particular the model has been used to investigate polarisation, PRLs and superlenses in AMOL. This thesis demonstrates the ability of AMOL to create narrow apertures and sub-diffraction limited exposures in a photoresist, and describes the limitations of AMOL, including material parameters and DOF. AMOL is a new and interesting lithography technique; this thesis simulates the abilities and challenges of sub-diffraction lithography using an AMOL system.
3

La lithographie par double impression pour les noeuds technologiques avancés / Double patterning lithography for advanced nodes technology

Zeggaoui, Nassima 21 October 2011 (has links)
La lithographie par double impression est une solution potentielle proposée pour l'impression des circuits des nœuds technologiques avancés (22nm et au-delà) en attendant que la lithographie Extrême Ultraviolet soit prête pour la production en masse. La technique de double impression est basée sur la décomposition en deux masques d'exposition des motifs d'un niveau donné du circuit intégré. Deux motifs voisins ayant un pas inférieur au pas minimal résolu en un procédé lithographique sont affiliés simultanément à deux masques différents. Les motifs ayant des pas supérieurs au pas critique, motifs non critiques, sont mis sur un masque ou sur un autre dans le but de générer une densité de motifs équivalente entre les deux masques d'exposition. Dans cette thèse, nous avons développé une nouvelle méthode de décomposition dite « décomposition optique ». Cette dernière est basée sur l'analyse de l'interaction des ordres de diffraction dans le plan de la pupille du système optique de projection. La décomposition optique permet d'améliorer l'affiliation des motifs non critiques à l'un des deux masques dans le but d'améliorer le contraste des deux masques lors de la double impression. Afin de valider cette nouvelle méthode de décomposition, nous l'avons appliqué au niveau contacts d'un circuit de logique du nœud 22nm. / As the lithography EUV is not yet ready to be used for semi-conductor business needs, the double patterning lithography is a promising solution to print sub 22nm node features. The principle of the double patterning is the pitch splitting also named as the coloring of a given circuit layer's features. Two adjacent features must be assigned opposite masks or opposite colors corresponding to different exposures, if their pitch is less than the minimum resolvable pitch. However, features with pitches larger than the critical one are not critical and could be assigned to one of the two masks for density balance. In this thesis, we developed a new split called “optical split” based on the diffractive orders analysis in the pupil plane. The optical split optimizes the non critical contacts affiliation to one of the two exposure masks. The goal of the optical split is to enhance the lithographic performances of the generated masks in order to improve the double patterning process printing. In order to validate the optical split, we apply it on contact layer of the 22nm node logic.
4

Optical Lithography Simulation using Wavelet Transform

Rodrigues, Rance 01 January 2010 (has links) (PDF)
Optical lithography is an indispensible step in the process flow of Design for Manufacturability (DFM). Optical lithography simulation is a compute intensive task and simulation performance, or lack thereof can be a determining factor in time to market. Thus, the efficiency of lithography simulation is of paramount importance. Coherent decomposition is a popular simulation technique for aerial imaging simulation. In this thesis, we propose an approximate simulation technique based on the 2D wavelet transform and use a number of optimization methods to further improve polygon edge detection. Results show that the proposed method suffers from an average error of less than 6% when compared with the coherent decomposition method. The benefits of the proposed method are (i) > 20X increase in performance and more importantly (ii) it allows very large circuits to be simulated while some commercial tools are severely capacity limited and cannot even simulate a circuit as small as ISCAS-85 benchmark C17. Approximate simulation is quite attractive for layout optimization where it may be used in a loop and may even be acceptable for final layout verification.
5

Lithographie optique, dépôts de films minces de tungstène et trioxyde de tungstène dédiés aux capteurs de gaz semiconducteurs / Optical lithography, tungsten thin film deposits and tungsten trioxide dedicated to semiconductor gas sensors

Verbrugghe, Nathalie 11 July 2019 (has links)
Porté par les préoccupations actuelles en matière de sécurité et de qualité environnementale ainsi que par les efforts de recherche entrepris dans ce domaine, le marché mondial des capteurs de gaz est en pleine expansion. Dans le contexte de la commercialisation d'un capteur de gaz, une phase d'amélioration de ses performances, et notamment de sa sensibilité et de sa stabilité, est naturellement nécessaire. Cependant, il s'avère également pertinent d'envisager d'en diminuer le coût de fabrication. Pour cela, il convient de développer une technologie utilisant d'une part des matériaux bas coût et d'autre part permettant de réduire la consommation électrique du dispositif. Dans cette optique, ce travail de thèse a porté sur la réalisation et la caractérisation d'un capteur de gaz oxyde semi-conducteur entièrement basé sur le tungstène et le trioxyde de tungstène pour la détection d'hydrogène sulfuré en milieu industriel. Le principal onjectif était de fabriquer un capteur faible coût en utilisant des techniques d'élaboration simples et des matériaux peu onéreux. Pour cela, notre travail a consisté, dans un premier temps, à développer un élément chauffant en tungstène pouvant fonctionner jusqu'à 500°C. Les procédés mis au point pour la conception de l'élément chauffant ont été utilisés dans l'élaboration des électrodes permettant de mesurer la résistance électrique du film de trioxyde de tungstène. Ensuite, nous avons travaillé sur l'optimisation du procédé de pulvérisation cathodique radio fréquence pour l'élaboration de l'élément sensible en trioxyde de tungstène. Des essais sous gaz ont montré des résultats prometteurs pour la détection d'hydrogène, de dioxyde d'azote et d'ammoniac. / Driven by current safety and environmental quality concerns and research efforts in this area, the global market for gas sensors is expanding rapidly. In the context of the marketing of a gas sensor, a phase of improvement in its performance, and in particular its sensitivity and stability, is naturally necessary. However, it is also relevant to consider reducing the cost of manufacturing. To achieve this, it is necessary to develop a technology that uses low-cost materials and reduces the device's power consumption. In this perspective, this thesis work focused on the realization and characterization of a semiconductor oxide gas sensor entirely based on tungsten and tungsten trioxide for the detection of hydrogen sulfide in an industrial environment. The main objective was to manufacturate a low-cost sensor using simple processing techniques and low-cost materials. To achieve this, our work initially consisted in developing a tungsten heating element that can operate up to 500°C. The processes developed for the conception of the heating element were used in the development of the electrodes for measuring the electrical resistance of the tungsten trioxide film. Then, we worked on the optimization of the radio frequency sputtering process for the development of the tungsten trioxide sensing element. Gas measurements have shown promising results for the detection of hydrogen sulfide, nitrogen dioxide and ammonia.
6

Study on Buckling of Stiff Thin Films on Soft Substrates as Functional Materials

January 2014 (has links)
abstract: In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles with macroscopic wavelengths are not technologically useful; over the past decade or so, however, thanks to the widespread availability of soft polymers and silicone materials micro-buckles with wavelengths in submicron to micron scale have received increasing attention because it is useful for generating well-ordered periodic microstructures spontaneously without conventional lithographic techniques. This thesis investigates the buckling behavior of thin stiff films on soft polymeric substrates and explores a variety of applications, ranging from optical gratings, optical masks, energy harvest to energy storage. A laser scanning technique is proposed to detect micro-strain induced by thermomechanical loads and a periodic buckling microstructure is employed as a diffraction grating with broad wavelength tunability, which is spontaneously generated from a metallic thin film on polymer substrates. A mechanical strategy is also presented for quantitatively buckling nanoribbons of piezoelectric material on polymer substrates involving the combined use of lithographically patterning surface adhesion sites and transfer printing technique. The precisely engineered buckling configurations provide a route to energy harvesters with extremely high levels of stretchability. This stiff-thin-film/polymer hybrid structure is further employed into electrochemical field to circumvent the electrochemically-driven stress issue in silicon-anode-based lithium ion batteries. It shows that the initial flat silicon-nanoribbon-anode on a polymer substrate tends to buckle to mitigate the lithiation-induced stress so as to avoid the pulverization of silicon anode. Spontaneously generated submicron buckles of film/polymer are also used as an optical mask to produce submicron periodic patterns with large filling ratio in contrast to generating only ~100 nm edge submicron patterns in conventional near-field soft contact photolithography. This thesis aims to deepen understanding of buckling behavior of thin films on compliant substrates and, in turn, to harness the fundamental properties of such instability for diverse applications. / Dissertation/Thesis / Ph.D. Mechanical Engineering 2014
7

Processing of Sub-micrometer Features for Rear Contact Passivation Layer of Ultrathin Film Solar Cells Using Optical Lithography

Roxner, Evelina, Olsmats Baumeister, Ronja January 2019 (has links)
Thin film copper, indium, gallium, selenide (CIGS) solar cells are promising in the field of photovoltaic technology. To reduce material and fabrication cost, as well as increasing electrical properties of the cell, research is ongoing towards ultra-thin film solar cells (absorption layer thickness less than 500 nm). Ultra-thin CIGS solar cells has shown a decrease in interface recombination and improved optical properties when adding a rear contact passivation layer of aluminium oxide. In this work, the process of creating sub-micrometer features of a passivation layer using conventional optical lithography is investigated. To specify, the objective was to optimize the development conditions in the optical lithography process when fabricating equidistant line contacts in aluminium oxide with 800 nm feature size. It was found that line contacts with smaller feature sizes require longer development time, than line contacts with larger feature sizes. The experiments conducted showed that the pre-set development and exposure conditions used by the NOA group are not optimized for 800 nm or smaller line contacts. Further, for the optical lithography process, silicon substrates are not comparable with substrates of soda lime glass coated with molybdenum. Slight underdevelopment of a sample, showed line contacts smaller than the resolution of the laser used in the exposure – suggesting an alternative method of processing small line contacts with optical lithography.
8

Pattern-integrated interference lithography: single-exposure formation of photonic-crystal lattices with integrated functional elements

Burrow, Guy Matthew 15 June 2012 (has links)
A new type of photolithography, Pattern-Integrated Interference Lithography (PIIL), was demonstrated. PIIL is the first-ever integration of pattern imaging with interference lithography in a single-exposure step. The result is an optical-intensity distribution composed of a subwavelength periodic lattice with integrated functional circuit elements. To demonstrate the PIIL method, a Pattern-Integrated Interference Exposure System (PIIES) was developed that incorporates a projection imaging capability in a novel three-beam interference configuration. The purpose of this system was to fabricate, in a single-exposure step, representative photonic-crystal structures. Initial experimental results have confirmed the PIIL concept, demonstrating the potential application of PIIL in nano-electronics, photonic crystals, biomedical structures, optical trapping, metamaterials, and in numerous subwavelength structures. In the design of the PIIES configuration, accurate motif geometry models were developed for the 2D plane-group symmetries possible via linearly-polarized three-beam interference, optimized for maximum absolute contrast and primitive-lattice-vector direction equal contrast. Next, a straightforward methodology was presented to facilitate a thorough analysis of effects of parametric constraints on interference-pattern symmetries, motif geometries, and their absolute contrasts. With this information, the design of the basic PIIES configuration was presented along with a model that simulates the resulting optical-intensity distribution at the system sample plane. Appropriate performance metrics were defined in order to quantify the characteristics of the resulting photonic-crystal structure.
9

High Aspect Ratio Lithographic Imaging at Ultra-high Numerical Apertures: Evanescent Interference Lithography with Resonant Reflector Underlayers

Mehrotra, Prateek January 2012 (has links)
A near-field technique known as evanescent interferometric lithography allows for high resolution imaging. However its primary limitation is that the image exponentially decays within the photoresist due to physical limits. This thesis aims to overcome this limitation and presents a method to considerably enhance the depth of focus of images created using evanescent interferometric lithography by using a material underlay beneath the photoresist. A key enabler of this is the understanding that evanescent fields couple to surface states and operating within proximity of a resonance, the strength of the coupling allows for considerable energy extraction from the incident beam and redistribution of this energy in a photoresist cavity. This led to the analysis of the Fresnel equations, which suggested that such coupling was in fact the result of an enhanced reflectance that takes place at boundaries of carefully chosen materials. While it is known that metals and lossy dielectrics result in surface plasmon polaritons (SPP) and surface exciton polaritons (SEP) as conventional solutions to the Fresnel reflection equations for the TM polarization of light, there is no such naturally occurring surface state that allows evanescent wave enhancement with the TE polarization of light. Further investigation of the Fresnel reflection equations revealed both for TM and TE that in fact another solution exists that is but unconventional to enhance the reflectivity. This solution requires that one of the media have a negative loss. This is a new type of surface resonance that requires that one of the media be a gain medium; not one in the optical pumped sense but one that would naturally supply energy to a wave to make it grow. This new surface resonance is also a key result of this thesis. Clearly, however this is only a hypothetical solution as a real gain medium would violate the conservation of energy. However, as it is only the reflectance of this gain medium that is useful for evanescent wave enhancement, in fact a multilayered stack consisting of naturally occurring materials is one way to achieve the desired reflectivity. This would of course be only an emulation of the reflectivity aspect of the gain medium. This multilayered stack is then an effective gain medium for the reflectivity purposes when imaging is carried out at a particular NA at a particular wavelength. This proposal is also a key idea of this thesis. At λ = 193 nm, this method was used to propose a feasible design to image high resolution structures, NA = 1.85 at an aspect ratio of ~3.2. To experimentally demonstrate the enhancements, a new type of solid immersion test bed, the solid immersion Lloyd's mirror interference lithography test-bed was constructed. High quality line and space patterns with a half-pitch of 55.5 nm were created using λ = 405 nm, corresponding to a NA of 1.824, that is well in the evanescent regime of light. Image depths of 33-40 nm were seen. Next, the evanescent image was coupled to an effective gain medium made up of a thin layer of hafnium oxide (HfO) upon silicon dioxide (SiO2). This resulted in a considerable depth enhancement, and 105 nm tall structures were imaged. The work in this thesis details the construction of the solid immersion lithography test-bed, describes the implementation of the modeling tools, details the theory and analysis required to achieve the relevant solutions and understanding of the physical mechanism and finally experimentally demonstrates an enhancement that allows evanescent interferometric lithography beyond conventional limits.
10

Diminution of the lithographic process variability for advanced technology nodes / Diminution de la variabilité du procédé lithographique pour les noeuds technologiques avancés

Szucs, Anna 10 December 2015 (has links)
A l’heure actuelle, la lithographie optique 193 nm arrive à ces limites de capacité en termes de résolution des motifs dans la fenêtre du procédé souhaitée pour les nœuds avancés. Des lithographies de nouvelle génération (NGL) sont à l’étude, comme la lithographie EUV (EUV). La complexité de mise en production de ces nouvelles lithographie entraine que la lithographie 193 nm continue à être exploitée pour les nœuds 28 nm et au-delà. Afin de suivre la miniaturisation le rôle des techniques alternatives comme le RET (en anglais Resolution Enhancement Technique) tels que l’OPC (Optical Proximity Correction) est devenu primordial et essentiel. Néanmoins, la complexité croissante de design et de la variabilité du procédé lithographique font qu’il est nécessaire de faire des compromis. Dans ce contexte de complexité croissante du procédé de fabrication, l’objectif de la thèse est de mettre en place une méthode de boucles de correction des facteurs de variabilité. Cela signifie une diminution de la variabilité des motifs complexes pour assurer une résolution suffisante dans la fenêtre de procédé. Ces motifs complexes sont très importants, car c’est eux qui peuvent diminuer la profondeur du champ commune (uDoF). Afin d'accomplir cette tâche, nous avons proposé et validé un enchainement qui pourra être plus tard implémenté en production. L’enchainement en question consiste en une méthodologie de détection basée sur la simulation des motifs les plus critiques étant impactés par les effets issus de la topographie du masque et du profil de la résine. En outre cette méthodologie consiste en une diminution et la compensation de ces effets, une fois que ces motifs les plus critiques sont détectés. Le résultat de l’enchaînement complété sont encourageants : une méthode qui détecte et diminue les variabilités du processus lithographique pour des nœuds de technologie de 28nm a été validée. En plus elle pourrait être adaptée pour les nœuds au-delà de 28 nm. / The currently used 193 nm optical lithography reaches its limits from resolution point of view. Itis despite of the fact that various techniques have been developed to push this limit as much aspossible. Indeed new generation lithography exists such as the EUV, but are not yet reliable to beapplied in mass production. Thus in orders to maintain a robust lithographic process for theseshrunk nodes, 28 nm and beyond, the optical lithography needs to be further explored. It ispossible through alternatives techniques: e.g. the RETs (Resolution Enhancement Techniques),such as OPC (Optical Proximity Correction) and the double patterning. In addition to theresolution limits, advanced technology nodes are dealing with increasing complexity of design andsteadily increasing process variability requiring more and more compromises.In the light of this increasing complexity, this dissertation work is addressed to mitigate thelithographic process variability by the implementation of a correction (mitigation) flow exploredmainly through the capability of computational lithography. Within this frame, our main objectiveis to participate to the challenge of assuring a good imaging quality for the process windowlimiting patterns with an acceptable gain in uDoF (usable Depth of Focus).In order to accomplish this task, we proposed and validated a flow that might be laterimplemented in the production. The proposed flow consists on simulation based detectionmethodology of the most critical patterns that are impacted by effects coming from the masktopography and the resist profile. Furthermore it consists of the mitigation and the compensationof these effects, once the critical patterns are detected. The obtained results on the completedflow are encouraging: a validated method that detects the critical patterns and then mitigates thelithographic process variability been developed successfully.

Page generated in 0.0776 seconds