Spelling suggestions: "subject:"high concentration"" "subject:"igh concentration""
1 |
Proppant Fracture Conductivity with High Proppant Loading and High Closure StressRivers, Matthew Charles 2010 May 1900 (has links)
Ultra-deepwater reservoirs are important unconventional reservoirs that hold the
potential to produce billions of barrels of hydrocarbons, but also present major
challenges. This type of reservoir is usually high pressure and high temperature (HPHT)
and has a relatively high permeability. Hydraulic fracturing high permeability reservoirs
are different from the hydraulic fracturing technology used in low permeability
formations. The main purpose of hydraulic fracturing in low permeability reservoirs is
to create a long, highly conductive path, whereas in high permeability formations
hydraulic fracturing is used predominantly to bypass near wellbore formation damage,
control sand production and reduce near wellbore pressure drop. Hydraulically
fracturing these types of wells requires short fractures packed with high proppant
concentrations. In addition, fracturing in high permeability reservoirs aims at achieving
enough fracture length to increase productivity, especially when the viscosity of the
reservoir fluid is high. In order to pump such a job and ensure long term productivity
from the fracture, understanding the behavior of the fracture fluid and proppant is
critical.
A series of laboratory experiments have been conducted to study conductivity
and fracture width with high proppant loading, high temperature and high pressure.
Proppant was manually placed in the fracture and fracture fluid was pumped through the
pack. Conductivity was measured by pumping oil to simulate reservoir conditions.
Proppant performance and fracture fluids, which carry the proppant into the fracture, and
their subsequent clean-up during production, were studied. High strength proppant is
ideal for deep fracture stimulations and in this study different proppant loadings at
different stresses were tested to see the impact of crushing and fracture width reduction
on fracture conductivity.
The preliminary test results indicated that oil at reservoir conditions improves
clean-up of fracture fluid left in the proppant pack compared with using water at ambient
temperature. Increasing the proppant concentration in the fracture showed higher
conductivity values in some cases even at high closure stress. The increase in effective
closure stress with high temperature resulted in a significant loss in conductivity.
Additionally, the fracture width decreased with time and increased effective closure
stress. Tests were also run to study the effect of cyclic loading which is expected to
further decrease conductivity.
|
2 |
Synthesis and Applications of Nanostructured Zeolites from Geopolymer ChemistryJanuary 2019 (has links)
abstract: Nanostructured zeolites, in particular nanocrystalline zeolites, are of great interest due to their efficient use in conventional catalysis, separations, and emerging applications. Despite the recent advances, fewer than 20 zeolite framework types have been synthesized in the form of nanocrystallites and their scalable synthesis has yet to be developed and understood. Geopolymers, claimed to be “amorphous cousins of zeolites”, are a class of ceramic-like aluminosilicate materials with prominent application in construction due to their unique chemical and mechanical properties. Despite the monolith form, geopolymers are fundamentally nanostructured materials and contain zeolite nanocrystallites.
Herein, a new cost-effective and scalable synthesis of various types of nanocrystalline zeolites based on geopolymer chemistry is presented. The study includes the synthesis of highly crystalline discrete nanorods of a CAN zeolite framework structure that had not been achieved hitherto, the exploration of the Na−Al−Si−H2O kinetic phase diagram of hydrogels that gives SOD, CAN and FAU nanocrystalline zeolites, and the discovery of a unique formation mechanism of highly crystalline nanostructured FAU zeolite with intermediate gel products that possess an unprecedented uniform distribution of elements. This study demonstrated the possibility of using high-concentration hydrogels for the synthesis of nanocrystalline zeolites of additional framework structures.
Moreover, a comprehensive study on nanostructured FAU zeolites ion-exchanged with Ag+, Zn2+, Cu2+ and Fe2+ for antibacterial applications is presented, which comprises metal ion release kinetics, antibacterial properties, and cytotoxicity. For the first time, superior metal ion release performance was confirmed for the nanostructured zeolites compared to their micron-sized counterparts. The metal ion-exchanged FAU nanostructured zeolites were established as new effective antibacterial materials featuring their unique physiochemical, antibacterial, and cytotoxic properties. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2019
|
3 |
Fluid Mud Formation in the Petitcodiac River, New Brunswick, CanadaHeath, Kristy Marie January 2009 (has links)
Thesis advisor: Gail C. Kineke / Experiments were conducted in the Petitcodiac River in New Brunswick, Canada during June and August 2006 to study high-concentrations of suspended sediment in a turbulent system. This study will evaluate the conditions necessary for fluid mud formation by investigating 1) the suppression of turbulence at gradient Richardson numbers greater than 0.25; 2) a threshold condition for the amount of sediment a flow can maintain in a turbulent suspension; and 3) the influence of flocculation on vertical suspended-sediment transport. Direct measurements of salinity, temperature, current velocity, and suspended-sediment concentration were collected during accelerating and decelerating flows and when fluid mud formed. In June, current velocities were typically above 1 m s<super>-1</super> and suspended-sediment concentrations were generally less than 10 g l <super>-1</super>. In August, current velocities were typically less than 1.5 m s<super>-1</super>, suspended-sediment concentrations were greater than 10 g l <super>-1</super>, and a high-concentration bottom layer formed rapidly during decelerating flood currents. Gradient Richardson numbers for concentrations greater than 10 g l <super>-1</super> were generally greater than 0.25, suggesting strong density gradients have the ability to suppress turbulence. Results from the Petitcodiac suggest a carrying capacity threshold might exist, but is based on a critical gradient Richardson number between 1.0 and 2.0 rather than the previously accepted value of 0.25. Differences in the evolution of disaggregated grain size distributions for settling suspensions suggest flocculation plays an important role for fluid mud formation by enhancing settling of fine sediments. / Thesis (MS) — Boston College, 2009. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Geology and Geophysics.
|
4 |
HIGH CONCENTRATION HYDRATE IN DISSEMINATED FORMS OBTAINED IN SHENHU AREA, NORTH SLOPE OF SOUTH CHINA SEAYang, Shengxiong, Zhang, Haiqi, Wu, Nengyou, Su, Xin, Schultheiss, Peter, Holland, Melanie, Zhang, Guang-Xue, Liang, Jinqiang, Lu, Jing'an, Rose, Kelly 07 1900 (has links)
In April-June of 2007, a gas hydrate drilling expedition was carried out by using M/V Bavenit in Shenhu Area, the north slope of South China Sea. High concentrations of hydrate (>40%) were obtained in a disseminated forms in foram-rich clay sediments at 3 selected sites. The hydrate-bearing sediments ranged several ten meters in thickness are located in the lower part of GHSZ, just above the BGHSZ, and are typically characteristic of higher sonic velocity and resistivity, and lower gamma density in wireline logging profiles. Evidences for gas hydrate include the IR cold spots and temperature anomalies, salinity and chlorite geochemical anomaly of pore water for non-pressurized cores, and X-ray imaging, high p-wave velocity and low gamma density, and high concentration of methane from the pressurized cores. Gasses are mainly methane (max. ethane 0.2-0.3%), therefore only hydrate S1 is formed. It is inferred that the foram content and other silt size grains may provide enough free water for the hydrate to happily occupy both the large spaces in the forams and for it to distribute itself evenly (disseminated) throughout the formation. It is possible that all the forams are hydrate filled. As the forams are visible does this not count for visible white gas hydrates.
|
5 |
Stabilisation of acrylic latexes containing silica nanoparticles for dirt repellent coating applicationsSwift, Thomas 07 March 2023 (has links)
Yes / This study examines the feasibility of using colloidal silica nanoparticles as active agents in high concentration waterborne polymer latex formulations. We showed that distributing the silica throughout the waterborne emulsion formed a composite coating material with a hydrophilic surface that consequently reduced exterior dirt pickup. Two grades of silica nanoparticles were studied, one using sodium stabilisation and another using epoxysilane modification to introduce glycidox-ypropyltrimethoxysilane surface functionality. Rheological study of the waterborne latex on mixing showed that there was an immediate pH responsive interaction between the silica sols and the polymer latex. Once loading of sodium charge stabilised silica NPs exceeded the volume required for heteroflocculation to occur the mixture demonstrated the potential to gel on standing – a process which took weeks, or months, to occur depending on the pH and relative concentrations used. At least fifty percent silane modification to the NP surface was found to be necessary to maintain a stable colloidal dispersion for long term storage of the waterborne latex. Despite this both grades of silica were found to imbue reductions in dirt pickup when applied to exterior masonry concrete studies over a 3-month weathering test / This work was supported by the Royal Society of Chemistry [E21-8346952505].
|
6 |
Integrated Model Development for Safeguarding Pyroprocessing FacilityZhou, Wentao 01 September 2017 (has links)
No description available.
|
7 |
Synthèse de macrocycles par réaction de métathèse et application en débit continuRaymond, Michaël 08 1900 (has links)
La réaction de macrocyclisation par métathèse est une réaction clé en synthèse organique et qui comporte de nombreux défis. Les méthodes traditionnelles de macrocyclisation impliquent par exemple la haute dilution du mélange réactionnel et l’emploie d’une pompe seringue. Dans cette thèse de doctorat, une méthode qui évite l’emploi des techniques de haute dilution a été développée. Cette méthode a été appliquée à la synthèse de cyclophanes macrocycliques. De plus, la synthèse totale de la néomarchantine A, un macrocycle bisbibenzylique, a été réalisée en 12 étapes à partir de produits commercialement disponibles avec un couplage d’Ullmann, un couplage de Wittig et une macrocyclisation par métathèse comme réactions clés. La chimie en débit continu, une méthode facilement applicable en milieu industriel, a été explorée. Cette technologie a été appliquée à l’étape clé de macrocyclisation par métathèse pour la synthèse de la néomarchantine A ainsi que pour la synthèse d’un musc macrocyclique breveté par la compagnie « International Flavors and Fragrances (IFF) ». / The macrocyclic metathesis reaction is a key reaction in organic synthesis and possesses numerous challenges. Traditional methods typically involve high dilution conditions and the use of a syringe pump. In this doctoral thesis, a method that avoids the use of dilution technics has been developed. This method has been applied to the synthesis of macrocyclic cyclophanes. Furthermore, total synthesis of neomarchantin A, a bisbibenzyl macrocycle, has been done in 12 steps from commercially available reagents with an Ullmann coupling, a Wittig coupling and a macrocyclic metathesis reaction as key steps. Continuous flow chemistry, a method easily applicable in an industrial setting, has been explored. This technology was applied to the key macrocyclization step of the neomarchantin A and for the synthesis of a macrocyclic musk patented by International Flavors and Fragrances (IFF).
|
8 |
Catalytic Hydrogenation of Nitrile Rubber in High Concentration SolutionLi, Ting January 2011 (has links)
Chemical modification is an important way to improve the properties of existing polymers, and one of the important examples is the hydrogenation of nitrile butadiene rubber (NBR) in organic solvent by homogeneous catalysis in order to extend its application. This process has been industrialized for many years to provide high performance elastomers (HNBR) for the automotive industry, especially those used to produce components in engine compartments.
In the current commercial process, a batch reactor is employed for the hydrogenation step, which is labor intensive and not suitable for large volume of production. Thus, novel hydrogenation devices such as a continuous process are being developed in our research group to overcome these drawbacks. In order to make the process more practical for industrial application, high concentration polymer solutions should be targeted for the continuous hydrogenation. However, many problems are encountered due to the viscosity of the high concentration polymer solution, which increases tremendously as the reaction goes on, resulting in severe mass transfer and heat transfer problems. So, hydrogenation kinetics in high concentration NBR solution, as well as the rheological properties of this viscous solution are very essential and fundamental for the design of novel hydrogenation processes and reactor scale up.
In the present work, hydrogenation of NBR in high concentration solution was carried out in a batch reactor. A commercial rhodium catalyst, Wilkinson’s catalyst, was used with triphenylphosphine as the co-catalyst and chlorobenzene as the solvent. The reactor was modified and a PID controller was tuned to fit this strong exothermic reaction. It was observed that when NBR solution is in a high concentration the kinetic behavior was greatly affected by mass transfer processes, especially the gas-liquid mass transfer. Reactor internals were designed and various agitators were investigated to improve the mechanical mixing. Experimental results show that the turbine-anchor combined agitator could provide superior mixing for this viscous reaction system.
The kinetic behavior of NBR hydrogenation under low catalyst concentration was also studied. It was observed that the hydrogenation degree of the polymer could not reach 95% if less than 0.1%wt catalyst (based on polymer mass) was used, deviating from the behavior under a normal catalyst concentration.
The viscosity of the NBR-MCB solutions was measured in a rotational rheometer that has a cylinder sensor under both room conditions and reaction conditions. Parameters that might affect the viscosity of the solutions were studied, especially the hydrogenation degree of polymer. Rheological properties of NBR-MEK solutions, as well as NBR melts were also studied for relevant information.
It is concluded that the hydrogenation kinetics deviates from that reported by Parent et al. [6] when polymer is in high concentration and/or catalyst is in low concentration; and that the reaction solution (HNBR/NBR-MCB solution) deviates from Newtonian behavior when polymer concentration and hydrogenation degree are high.
|
9 |
Catalytic Hydrogenation of Nitrile Rubber in High Concentration SolutionLi, Ting January 2011 (has links)
Chemical modification is an important way to improve the properties of existing polymers, and one of the important examples is the hydrogenation of nitrile butadiene rubber (NBR) in organic solvent by homogeneous catalysis in order to extend its application. This process has been industrialized for many years to provide high performance elastomers (HNBR) for the automotive industry, especially those used to produce components in engine compartments.
In the current commercial process, a batch reactor is employed for the hydrogenation step, which is labor intensive and not suitable for large volume of production. Thus, novel hydrogenation devices such as a continuous process are being developed in our research group to overcome these drawbacks. In order to make the process more practical for industrial application, high concentration polymer solutions should be targeted for the continuous hydrogenation. However, many problems are encountered due to the viscosity of the high concentration polymer solution, which increases tremendously as the reaction goes on, resulting in severe mass transfer and heat transfer problems. So, hydrogenation kinetics in high concentration NBR solution, as well as the rheological properties of this viscous solution are very essential and fundamental for the design of novel hydrogenation processes and reactor scale up.
In the present work, hydrogenation of NBR in high concentration solution was carried out in a batch reactor. A commercial rhodium catalyst, Wilkinson’s catalyst, was used with triphenylphosphine as the co-catalyst and chlorobenzene as the solvent. The reactor was modified and a PID controller was tuned to fit this strong exothermic reaction. It was observed that when NBR solution is in a high concentration the kinetic behavior was greatly affected by mass transfer processes, especially the gas-liquid mass transfer. Reactor internals were designed and various agitators were investigated to improve the mechanical mixing. Experimental results show that the turbine-anchor combined agitator could provide superior mixing for this viscous reaction system.
The kinetic behavior of NBR hydrogenation under low catalyst concentration was also studied. It was observed that the hydrogenation degree of the polymer could not reach 95% if less than 0.1%wt catalyst (based on polymer mass) was used, deviating from the behavior under a normal catalyst concentration.
The viscosity of the NBR-MCB solutions was measured in a rotational rheometer that has a cylinder sensor under both room conditions and reaction conditions. Parameters that might affect the viscosity of the solutions were studied, especially the hydrogenation degree of polymer. Rheological properties of NBR-MEK solutions, as well as NBR melts were also studied for relevant information.
It is concluded that the hydrogenation kinetics deviates from that reported by Parent et al. [6] when polymer is in high concentration and/or catalyst is in low concentration; and that the reaction solution (HNBR/NBR-MCB solution) deviates from Newtonian behavior when polymer concentration and hydrogenation degree are high.
|
10 |
Integrated Study of Rare Earth Drawdown by Electrolysis for Molten Salt RecycleWu, Evan January 2017 (has links)
No description available.
|
Page generated in 0.1071 seconds